
Instituto de Sistemas e Robótica
Pólo de Lisboa

Convergence of independent
adaptive learners1

Francisco S. Melo
Manuel C. Lopes

May 2007
RT-603-07

ISR Torre Norte
Av. Rovisco Pais, 1

1049-001 Lisboa
PORTUGAL

1This work was partially supported by Programa Operacional Sociedade do Conhecimento (POS_C) that includes
FEDER funds. The first author acknowledges the PhD grant SFRH/BD/3074/2000.



Convergence of independent adaptive
learners

Francisco S. Melo Manuel C. Lopes
Institute for Systems and Robotics

Instituto Superior Técnico
Av. Rovisco Pais, 1
1049-001 Lisboa,

PORTUGAL
{fmelo,macl}@isr.ist.utl.pt

Abstract

In this paper we analyze the convergence of independent adaptive learners in repeated
games. We show that, in this class of games, independent adaptive learners converge to pure
Nash equilibria, if they exist. We discuss the relation between our result and convergence
results of adaptive play [22]. The importance of our result stems from the fact that, unlike
adaptive play, no communication/action observability is assumed. We also relate this result to
recent results on the convergence of weakened ficticious play processes for independent learners
[11, 19]. Finally we present some experimental results to illustrate the main ideas of the paper.

1 Introduction
Game theory provides a mathematical framework to model situations in which several decision-
makers interact. These interactions can occur at different levels, ranging from “games” in the
common everyday sense to more complex interactions such as those taking place in economical
or biological systems [15]. Situations where coordination/competition among several agents occur
are naturally captured using game theoretic models; concepts such as Nash equilibrium define
stable behavioral conventions from which no agent can profitably deviate. Such equilibria provide
multi-agent counterparts to the concept of optimal behavior-rule in single-agent systems.

Game theory is traditionally used in economics, where it provides powerful models to describe
interactions of economical agents. Recent years have witnessed an increasing interest from the com-
puter science and robotic communities in applying game theoretic models to multi-agent systems
[4, 5, 21]. For example, the interaction of a group of robots moving in a common environment
can be naturally captured using a game theoretic model and their observed behavior suitably
interpreted using game theoretic concepts.

When addressing game theory from a learning perspective, Boutilier [1] distinguishes two fun-
damental classes of learning agents: independent learners (IL) and joint-action learners (JAL).
The former have no knowledge on other agents, interacting with the environment as if no other
decision-makers existed. The latter, on the contrary, are aware of the existence of other agents and
are capable of perceiving (a posteriori) their actions and rewards.

Learning algorithms considering JALs are easily implementable from standard single-agent
reinforcement learning algorithms [6, 12, 13]. Action observability allows a learning agent to build
statistics on the other agents’ behavior-rules and act in a best-response sense. This is the underlying
principle of standard methods such as fictitious play [2] or adaptive play [22].

However, in many practical applications it is not reasonable to assume the observability of other
agents’ actions. Most agents interact with their surroundings by relying on sensory information
and action recognition is often far from trivial. With no knowledge on the other agents’ actions and
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payoffs, the problem becomes more difficult. Tan [18] and Claus and Boutilier [3] some empirical
evidence is gathered that describes the convergence properties of reinforcement learning methods
in multi-agent settings. In these works, the experimental performance of ILs is compared with
that of JALs (using fictitious play). Wang and de Silva [21] and Crites and Barto [4] a similar
comparison is performed for specific problems.

Lauer and Riedmiller [10] study independent learners in deterministic settings. They provide
a learning algorithm that relies on strict assumptions on the other agents’ behavior. In particular,
the authors discuss the use of optimistic and pessimistic assumptions on the other agents’ behavior
and show their algorithm to converge in behavior to an optimal decision-rule. Kapetanakis and
Kudenko [7, 8] an improvement is proposed that deals with more non-deterministic settings. Recent
results have established the convergence of a variation of fictitious play for independent learners
[11], first introduced by Van der Genugten [19].

In this paper, we propose independent adaptive learning, a variation of adaptive play for in-
dependent learners. This algorithm has an obvious advantage over the original adaptive learning
algorithm [22], since it does not require each player to be able to observe the plays by the other
agents. Furthermore, no a priori knowledge of the payoff function is required. We show that, in
this class of games, independent adaptive learners converge to pure Nash equilibria, if they exist.
We also present some experimental validation of our results.

2 Background

In this section we introduce some background material that will be used throughout the paper.

2.1 Strategic and repeated games

A strategic game is a possible model of interaction between decision-makers. Formally can be
described as a tuple

(
N, (Ak), (rk)

)
, where N is the number of players, A = ×N

k=1Ak is the set of
possible joint actions and r is a reward function or payoff function. For k = 1, . . . , N , Ak represents
the set of individual actions available to player k. The payoff function rk : A → R is used to define
a preference relation %k on the set A—the preference relation of player k. The payoff functions in
strategic games can be represented by matrices, and such games are also known as matrix games.

We represent an element a ∈ A as a N -tuple a = (a1, . . . , aN ) and refer it as a joint action.
The tuple a−k = (a1, . . . , ak−1, ak+1, . . . , aN ) is a reduced joint action, and we write a = (a−k, ak)
to denote that the individual action of player k in the joint action a is ak.

Notice that a strategic game is a one-shot game, in that each play of the game is independent
of any previous plays. In particular, it is not possible to have memory effects in the players: even
if the game is played repeatedly, at each play no player has any knowledge of previous plays of
the game. If memory of past plays is possible, we refer to such a game as a repeated game. In
a repeated game, N players repeatedly engage in a strategic game defined as usual as a tuple(
N, (Ak), (rk)

)
. The repeated interaction allows the players to maintain, for example, statistics

describing the strategies of the other players and use these statistics to play accordingly.
A strategic game is zero-sum or strictly competitive if it has 2 players and r1 = −r2, and

general-sum otherwise. A general sum game is fully cooperative if r1 = . . . = rN .

2.2 Nash equilibria

In strategic games (and other classes of games) there is an implicit assumption of rationality on
the players. This means that each player k chooses from all its individual actions the best action
according to the preference relation arising from rk. However, the best action will often depend
on the other player’s choice of actions. This leads to the following definition.

A Nash equilibrium of a strategic game
(
N, (Ak), (rk)

)
is an action profile a∗ ∈ A such that,

for every player k = 1, . . . , N , rk(a∗) ≥ rk(a∗−k, ak), for all ak ∈ Ak. A Nash equilibrium can
be interpreted as an action profile capturing a steady-state play in the game: if a∗ is a Nash



4 Institute for Systems and Robotics

equilibrium, no player benefits from individually deviating its play from a∗. We emphasize that
not every strategic game has a Nash equilibrium.

So far, we have seen that payoff functions define a preference relation over the set A = ×N
k=1Ak.

However, it is often the case that the players choose their actions in a non-deterministic way. If
this is the case, each payoff function rk also translates the preferences of player k over possible
lotteries over the actions in A. A strategy for player k is a probability distribution over the set
Ak. A strategy σk assigns a probability σk(ak) to each action ak ∈ Ak. We say that player k
follows strategy σk when playing the game

(
N, (Ak), (rk)

)
if it chooses each action ak ∈ Ak with

probability σk(ak). If a strategy σk assigns probability 1 to some action ak ∈ Ak, then σk is a
pure strategy. Otherwise, it is called a mixed strategy. We define the concepts of joint strategy and
reduced joint strategy in a similar manner as defined for actions. The support of a strategy σk is
the set of all actions ak ∈ Ak such that σk(ak) > 0.

A mixed strategy Nash equilibrium of a strategic game
(
N, (Ak), (rk)

)
is a strategy profile σ∗

such that, for every player k = 1, . . . , N ,

Eσ∗ [Rk] ≥ E(σ∗−k, σk) [Rk]

for all strategies σk, where Rk is the random variable denoting the outcome of the game for player
k. The next theorem was established by John F. Nash in 1950 [15].

Theorem 2.1. Every strategic game
(
N, (Ak), (rk)

)
with finite A has a mixed strategy Nash equi-

librium.

2.3 Fictitious play
Fictitious play is an iterative procedure originally proposed by Brown [2] to determine the solution
for a strictly competitive game. This procedure was shown to converge in this class of games by
Robinson [16] and later extended to other classes of games by several authors [9, 11, 14, 19, see,
for example]).

In its original formulation, two players repeatedly engage in a strictly competitive game. Each
player maintains an estimate of the other player’s strategy as follows: let Nt(a) denote the number
of times that the individual action a was played up to (and including) the tthplay. At play t, player
k estimates the other player’s strategy to be

σ̂−k(a−k) =
Nt(a−k)

t
,

for each a−k ∈ A−k. The expected payoff associated with each individual action of player k is then

EP (ak) =
∑

a−k∈A−k

rk(a−k, ak)σ̂−k(a−k).

Player k can now choose its action from the set of best responses,

BR =
{
ak ∈ Ak | ak = arg max

uk∈Ak

EP (uk)
}
.

Robinson [16] showed that this methodology yields two sequences {σ̂1}t and {σ̂2}t converging
respectively to σ∗1 and σ∗2 such that (σ∗1 , σ

∗
2) is a Nash equilibrium for the game

(
{1, 2} , (Ak), (rk)

)
.

In general, it is not possible to ensure that fictitious play converges in all games. However, for
particular classes of games (see the references above), it is possible to establish the convergence of
fictitious play, and this methodology can be used by a set of agents to learn a Nash equilibrium.

2.4 Adaptive play
Adaptive play was first proposed by Young [22] as an alternative method to fictitious play. The basic
underlying idea is similar to fictitious play, but the actual method works differently from fictitious
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play. For games which are weakly acyclic, adaptive play converges w.p.1 to a pure strategy Nash
equilibrium, both in beliefs and in behavior.1

Let h be a vector of length m. We refer to any set of K samples randomly drawn from h
without replacement as a K-sample and denote it generically by K(h), where K and m are any
two integers such that 1 ≤ K ≤ m

Let Γ =
(
N, (Ak), (rk)

)
be a repeated game played at discrete instants of time t = 1, 2, . . ..

At each play, each player k = 1, . . . , N chooses an action ak(t) ∈ Ak as described below, and the
action profile a(t) = (a1(t), . . . , aN (t)) is referred to as the play at time t. The history of plays up
to time t is a vector (a(1), . . . , a(t)).

Let K and m be as described above. At each time instant t = 1, 2, . . ., each player k = 1, . . . , N
chooses its action ak(t) as follows. For t ≤ m, ak(t) is chosen randomly from Ak; for t ≥ m + 1,
player k inspects K plays drawn without replacement from the most recent m plays. We denote
by Ht the m most recent plays at time t. Let NK(a−k) be the number of times that the reduced
action a−k appears in the K-sample K(Ht). Player k then uses K(Ht) and determines the expected
payoff EP (ak) for each ak ∈ Ak as

EP (ak) =
∑

a−k∈A−k

rk(a−k, ak)
NK(a−k)

K

It then randomly chooses its action from the set of best responses,

BR =
{
ak ∈ Ak | ak = arg max

uk∈Ak

EP (uk)
}
.

Notice that this procedure is similar to fictitious play in that it chooses the best response action
to the estimated reduced strategy σ̂−k. The only difference lies in the fact that adaptive play uses
incomplete history sampling, while fictitious play uses the complete history.

Young [22] established the convergence of adaptive play for repeated games that are weakly
acyclic. To properly introduce such result, let Γ =

(
N, (Ak), (rk)

)
be a strategic game with finite

action-space A = ×N
k=1Ak. The best response graph for Γ is a directed graph G = (V,E), where

each vertex corresponds to a joint action (i.e., V = A) and any two actions a, b ∈ A, are connected
by a directed edge (a, b) ∈ E if and only if a 6= b and there is exactly one player k for which bk is
a best-response to the pure strategy a−k and a−k = b−k. A strategic game Γ =

(
N, (Ak), (rk)

)
is

then weakly acyclic if, given any vertex a in its best response graph, there is a directed path to a
vertex a∗ from which there is no exiting edge (a sink).

It should be clear that a sink as described in the previous definition corresponds necessarily to
a strict Nash equilibrium. Given a weakly acyclic strategic game Γ =

(
N, (Ak), (rk)

)
, we denote

by L(a) the shortest path from the vertex a to a strict Nash equilibrium in the best response graph
of Γ and by L(Γ) = maxa∈A L(a). We are now in position to state the following theorem from
Young [22]:

Theorem 2.2. Let Γ =
(
N, (Ak), (rk)

)
be a weakly acyclic strategic game. If

K ≤ m

L(Γ) + 2
,

then adaptive play converges w.p.1 to a strict Nash equilibrium.

3 Independent adaptive leaning
In this section we describe independent adaptive learning, a variation of adaptive learning relying on
independent learners. This algorithm has an obvious advantage over the original adaptive learning
algorithm [22], since it does not require each player to be able to observe the plays by the other
agents. Furthermore, no a priori knowledge of the payoff function is required.

1For a discussion on the differences between convergence in beliefs and convergence in behavior, see the works
by Littman [12], Young [22].
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3.1 Independent adaptive learning process
Let Γ =

(
N, (Ak), (rk)

)
be a repeated game played at discrete instants of time t = 1, 2, . . .. At

each play, each player k = 1, . . . , N chooses an action ak(t) ∈ Ak and receives a reward rk(t). We
are interested in developing a learning algorithm for independent players, i.e., players that are not
able to observe the plays of the others. Therefore, we consider that all plays, rewards referred
henceforth concern a particular player k in Γ, except if explicitly stated otherwise. We refer to
the pair (a(t), r(t)) as the play (of player k) at time t. The history of plays up to time t is a set
Ht = {(a(1), r(1)), (a(2), r(2)), . . . , (a(t), r(t))}.

Let K and m be two integers 1 ≤ K ≤ m. At each time instant t = 1, 2, . . ., the player chooses
its action a(t) as follows. For t ≤ m, a(t) is chosen randomly from the corresponding action set
Ak; for t ≥ m + 1, the player inspects K plays drawn without replacement from its most recent
m plays. Suppose, for definiteness, that the selected plays corresponded to times t1, . . . , tk. The
expected payoff associated with each action u ∈ Ak is

EP (u) =
∑K

i=1 r(ti)Iu(a(ti))∑K
i=1 Iu(a(ti))

,

where Iu(·) is the indicator function for action u ∈ Ak. Given EP (u) for all u ∈ Ak, the player
now randomly chooses its action from the set

BR =
{
a ∈ Ak | a = arg max

u∈Ak

EP (u)
}
.

If one particular action u ∈ Ak is never played in the selected K plays, then the expected payoff
should be taken as any sufficiently large negative number (we henceforth take it to be −∞).

3.2 Convergence of the independent adaptive learning process
In this section we establish the convergence of our method by casting it as a variation of adaptive
play as described by Young [22].

The main differences between our algorithm and the standard adaptive play lie on the fact that
we do not assume any knowledge of the payoff function or any observability of the actions of the
other players. Instead, we rely on the sampling process to implicitly provide this information.

Before introducing our main result, we need the following definition, adapted from the work by
Singh et al. [17].

Definition 3.1 (GLIE strategy). A strategy σi is greedy in the limit with infinite exploration
(GLIE) if it verifies the following conditions:

• each action is visited infinitely often;

• in the limit, the policy is greedy with respect to some payoff function r w.p.1.

A well-known example of GLIE policy is Boltzmann exploration:

P [At = a | r] =
er(a)/Tt∑

u∈A e
r(u)/Tt

,

where Tt is a temperature parameter that decays at an adequate rate (see the work by Singh et al.
[17] for further details).

Theorem 3.1. Let Γ =
(
N, (Ak), (rk)

)
be a weakly acyclic N -player game. If

K ≤ m

L(Γ) + 2
,

then every independent adaptive learner following a GLIE policy will converge to a best response
strategy to the other players’ strategies with probability 1.
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Proof We start by considering a fixed exploration rate λ > 0. In this situation, the independent
adaptive learning process described in Subsection 3.1 yields an irreducible and aperiodic finite-state
Markov chain whose state-space consists on the set of all m-long sequences of joint actions. This
means that the sequence of histories provided by independent adaptive learning converges at an
exponential rate to a stationary distribution as described by Young [22].

It is important to remark that in the paper by Young [22], the author considers an experimen-
tation probability parameter ε, which defines the probability of a given player making a “mistake”.2
In our algorithm, if a particular action u ∈ Ak is never played in the selected K plays, then the
associated expected payoff is −∞. This means that, in our algorithm, the “mistakes” can arise due
to the exploration (with probability ε) or due to the subestimation of action-values. Obviously,
this does not affect the convergence of the chain but only the limiting distribution.

Young [22] showed that in weakly acyclic games, if K ≤ m
L(Γ)+2 , then as the experimentation

probability ε approaches to zero, the limiting distribution “narrows” around the Nash equilibria
in the game. This implies the convergence of the joint strategy to one such equilibrium w.p.1.
Therefore, the conclusions of our theorem follow from this result as long as we show that the
probability of making “mistakes” in our algorithm goes to zero at a suitable rate.

To see this, two important observations are in order. First of all, infinite exploration ensures
that the probability of all players converging to a strategy other than a Nash equilibrium is 0. On
the other hand, our assumption of a GLIE policy guarantees that λ → 0 as t → ∞, while always
ensuring sufficient exploration. This naturally implies that the probability of making exploration
“mistakes” decreases to zero. Furthermore, it also implies that Nash equilibria will be sampled with
increasing probability—as the exploration decreases, Nash equilibria will be played more frequently
and consequently more frequently sampled, and consequently more frequently played, and so on.
But this finally implies that, as t→∞, the probability of making “mistakes” due to sub-evaluation
also decreases to zero.

Finally, the probability of making “mistakes” goes to zero at a slower rate than the GLIE policy
becomes greedy which, by construction, is slower than the rate of convergence of the above Markov
chain to stationarity. This allows us to apply the desired result from the paper by Young [22] and
the proof is complete. 2 2

4 Experimental results
In this section we present the results of our method for several simple games.

4.0.1 Prisoner’s dilemma

The prisoner’s dilemma is a well-known game from game theory whose payoff function is represented
in Figure 1. In this game, two criminal prisoners are persuaded to confess/rat on the other by
being offered immunity. If none of the prisoners confess, they will be sentenced for a minor felony.
If one of the prisoners confesses and the other remains silent, the one that confesses will be released
while the other will be serve the full sentence. If both prisoners confess, they will not serve the full
sentence, but still remain in jail for a long time.

This game is very interesting from a game theoretic point-of-view. In fact, both players would
be better off by remaining silent, since they would both serve a short sentence. However, each player
profits by confessing, no matter what the other player does. Therefore, both players will confess
and therefore serve a long sentence. The joint action (R,R) is, therefore, a Nash equilibrium. This
is clear from the best-response graph, depicted in Figure 2, where it is also clear that the game is
weakly acyclic.

We have applied our algorithm to the prisoner’s dilemma. We ran 1000 independent Monte-
Carlo runs. Each run consisted of 900 plays of the game, for each of which we stored the received
payoff. We used Boltzmann exploration with decaying temperature factor to ensure sufficient
exploration of all actions. The results are depicted in Figure 3. Figure 3.a) presents the evolution

2We consider “mistakes” in the sense of Young [22].
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S R

S 5, 5 -10, 20

R 20, -10 -5, -5

Figure 1: Payoff for the prisoner’s dilemma.
Each prisoner may opt by remaining silent
(S) or by ratting on the other prisoner (R)

(S, S) (S, R)

(R,S) (R,R)

Figure 2: Best-response graph for the pris-
oner’s dilemma.

of the received payoff, averaged over the 1000 runs (the dotted lines represent the standard deviation
observed in the different runs). Figure 3.b) represents the percentage out of the 1000 runs that
the algorithm converged to each joint strategy.
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a) Evolution of expected payoff; b) Limit strategies.

Figure 3: Learning performance in the prisoner’s dilemma.

As mentioned, this game has a single Nash equilibrium, consisting of the pure strategy (R,R).
To this joint strategy corresponds a payoff of (−5,−5). By observing Figure 3.a) we can see that
the average payoff received by each player converged to −5, indicating that the algorithm converged
to the Nash equilibrium as expected. This is also clearly observable in Figure 3.b): the algorithm
converged to the joint strategy (R,R) 100% of the 1000 runs.

4.0.2 Battle of Sexes

The battle of sexes, also known as the “Bach or Stravinsky” game is described by the payoff function
in Figure 4. In this game, a couple must decide whether to go to a Bach concert or a Stravinsky
concert. The man prefers the Bach concert over the Stravinsky concert, while the woman prefers
Stravinsky over Bach. However, both prefer to attend a concert with company than alone.

Unlike the prisoner dilemma, this game has two pure Nash equilibria. This can be observed
from the best-response graph in Figure 5, where it is also clear that the game is weakly acyclic.
Notice that, in each Nash equilibrium, one of the players “submits” to the other player’s will (hence
the designation of “Battle of Sexes”), which is preferrable to attending the concert alone.

We applied our algorithm to this game. As in the prisoner’s dilemma, we ran 1000 indepen-
dent Monte-Carlo runs, each run consisting of 900 plays of the game. We again used Boltzmann
exploration with decaying temperature factor. The results are depicted in Figure 6.
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B S

B 20, 5 0, 0

S 0, 0 5, 20

Figure 4: Payoff for the battle of sexes.

(S, S) (S, B)

(B,S) (B,B)

Figure 5: Best-response graph for the BoS.
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a) Evolution of expected payoff; b) Limit strategies.

Figure 6: Learning performance in the battle of sexes.

This game has two Nash equilibria, consisting of the pure strategies (B,B) and (S, S). Each
such strategy rewards one of the players with a payoff of 20 and the other with a payoff of 5. Notice
in Figure 6.a) that the average payoff received by each player converged to 12.5. This means that
the algorithm converged approximately half of the times to each of the two Nash equilibria. This is
confirmed by observing Figure 6.b), where the algorithm converged to each of the joint strategies
(B,B) and (S, S) about 50% of the 1000 runs. This is an expected result: since the game is weakly
acyclic, in each run the algorithm will converge to one of the two equilibria. However, there is no
reason why one equilibrium is preferable to the other and, therefore, the algorithm will converge
to each of the two equilibria with a 50% probability.

4.0.3 Diagonal game

We next considered a 2-player, fully cooperative game described by the payoff function in Figure 7.
We considered two values for the parameter ψ, namely ψ = 0 and ψ = 0.1. Notice that, in both
situations, the diagonal elements corresponding to the joint actions (1, 1), (2, 2), (3, 3) and (4, 4)
yield higher payoff than the remaining joint actions, as if rewarding the two players for “agreeing”
upon their individual actions.

This game presents four pure Nash equilibria, corresponding to the diagonal elements in the
payoff matrix (Figure 7). This motivates the naming of the game as the “diagonal game”. The
four Nash equilibria are evident from the best-response graphs in Figure 8 for the situations where
ψ = 0 and ψ = 0.1. Notice, furthermore, that the game is weakly acyclic in both situations.

We applied our algorithm to both stances of the game, considering ψ = 0 and ψ = 0.1. We
ran 1000 independent Monte-Carlo runs, each consisting of 900 plays of the game. The results are
depicted in Figures 9 and 10.
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1 2 3 4

1 1 0.75 0.75 0.75

2 0.75 1− ψ 0.75 0.75

3 0.75 0.75 1− ψ 0.75

4 0.75 0.75 0.75 1

Figure 7: Payoff for the fully cooperative, diagonal game.

(1, 1) (1, 3)

(3, 1) (3, 3)
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(3, 2)

(1, 4)

(3, 4)

(2, 1) (2, 3)

(4, 1) (4, 3)

(2, 2)

(4, 2)

(2, 4)

(4, 4)

(1, 1) (1, 3)

(3, 1) (3, 3)

(1, 2)

(3, 2)

(1, 4)

(3, 4)

(2, 1) (2, 3)

(4, 1) (4, 3)

(2, 2)

(4, 2)

(2, 4)

(4, 4)

a) ψ = 0; b) ψ = 0.1.

Figure 8: Best-response graphs for the diagonal game when ψ = 0 and ψ = 0.1.
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a) Evolution of expected payoff; b) Limit strategies.

Figure 9: Learning performance in the diagonal game when ψ = 0.

We start by observing the results in Figure 9, concerning the situation where ψ = 0. In
this situation, we have four Nash equilibria yielding a similar payoff of 1. This means that, as
in the Battle of Sexes, the algorithm will expectedly converge to any of the four equilibria with
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a) Evolution of expected payoff; b) Limit strategies.

Figure 10: Learning performance in the diagonal game when ψ = 0.1.

equal probability, since no equilibria is preferrable to the other. This is indeed the case, as seen
in Figure 9: the average payoff to each player converges to 1 (Figure 9.a)) and the algorithm
converged to each of the four equilibria about 25% of the times.

When considering the situation where ψ = 0.1 the situation is a little different. In this case,
the four equilibria do not yield similar results and this will affect the convergence pattern of the
algorithm. We start by noticing in Figure 10.a) that the expected payoff for both players converges
to 0.975. This value has a precise interpretation that we provide next.

By close observation of the best-response graph in Figure 8.b) we notice, for example, that the
equilibrium (1, 1) can be reached from 7 different joint actions, namely, (1, 1), (1, 2), (2, 1), (1, 3),
(3, 1), (1, 4) and (4, 1). However, the joint actions (1, 4) and (4, 1) also lead to the equilibrium
(4, 4). This means that, out of the 16 possible joint actions, 5 lead to (1, 1) and 2 other lead to
(1, 1) half of the times. This reasoning allows to conclude that we expect (1, 1) to be the limit point
of our algorithm 6/16 = 37.5% of the times. The same reasoning can be applied to the equilibrium
(4, 4). As for the equilibria (2, 2) and (3, 3), the same reasoning leads to the conclusion that each of
these equilibria will be reached 2/16 = 12.5% of the times. These are, indeed, the results depicted
in Figure 10.b) and further lead to the conclusion that the average expected payoff for each player
is

rav = 2× 0.375× 1 + 2× 0.125× 0.9 = 0.975.

4.0.4 Prejudice game

The prejudice game is a fully cooperative game described by the payoff function in Figure 7. This
game models a situation in which two agents must (between the two) execute action 2. As long
as action 2 is executed, the other agent can successfully execute action 1. However, if some of
the players executes action 1 without the other executing action 2, they will both be penalized by
receiving −1. The other situations are not important and are thus rewarded with a payoff of 0.

This game has multiple pure Nash equilibria, marked in bold in the best response graph (Fig-
ure 12). It is also a weakly acyclic game, so our algorithm can immediately be applied with
guaranteed convergence. The results are depicted in Figure 13.

Conducting an analysis similar to the one in the previous game, we expect the algorithm to
converge to the (2, 2) equilibrium about 31.25% of the times. The equilibria (1, 2) and (2, 1) should
be attained about 21.875% of the times and the remaining 4 equilibria about 6.25% of the times.
By observing Figure 13.b) we can verify that this is indeed so. This leads to an average expected
payoff for each player of

rav = 0.3125× 1 + 2× 0.21875× 1 + 4× 0.0625× 0 = 0.75.
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1 2 3 4

1 -1 1 -1 -1

2 1 1 0 0

3 -1 0 0 0

4 -1 0 0 0

Figure 11: Payoff for the prejudice game.
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Figure 12: Best-response graph for the prej-
udice game.
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a) Evolution of expected payoff; b) Limit strategies.

Figure 13: Learning performance in the prejudice game.

We remark that the obtained value in Figure 13.a) is slightly superior, since in the reported results
the algorithm converged to the sub-optimal equilibria with a frequency slightly below the expected
value of 6.25%. This is justified by the random exploration: since the difference between the
optimal and suboptimal equilibria is significant, the use of Boltzmann exploration “facilitates” the
convergence to the optimal equilibria. We notice that this phenomenon is much less observable
in the diagonal game with ψ = 0.1, since the difference between the optimal and the suboptimal
equilibria is much less significant.

4.0.5 3-Player game

We now consider a fully cooperative 3-player game with multiple equilibria introduced by Wang
and Sandholm [20]. In this game, 3 players have available 3 possible actions, α, β and γ. The
players are rewarded maximum payoff if all 3 coordinate in the same individual action; they are
rewarded a small payoff if all play different actions. Otherwise, they are penalized with a negative
payoff.

The game has several Nash equilibria, marked in bold in the best-response graph in Figure 8.
Clearly, the game is weakly acyclic.

We applied our algorithm to the game, running 1000 independent Monte-Carlo runs, each
consisting of 900 plays of the game. The results are depicted in Figure 16.

Once again conducting an analysis similar to the one in the previous games, we expect the
algorithm to converge to the optimal equilibria about 25.9% of the times and to the suboptimal
equilibria about 3.7% of the times. As in the previous example, the use of Boltzmann exploration
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αα αβ αγ βα ββ βγ γα γβ γγ

α 10 -20 -20 -20 -20 5 -20 5 -20

β -20 -20 5 -20 10 -20 5 -20 -20

γ -20 5 -20 5 -20 -20 -20 -20 10

Figure 14: Payoff for the 3-player game by Wang and Sandholm [20].
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Figure 15: Best-response graph for the 3-player game by Wang and Sandholm [20].
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a) Evolution of expected payoff; b) Limit strategies.

Figure 16: Learning performance in the 3-player game by Wang and Sandholm [20].

leads to a slight increase in the number of runs converging to the optimal equilibria and consequent
decrease in the number of runs converging to the suboptimal equilibria (Figure 16.b)). This is
also noticeable since the average payoff per player actually converges to 20 (Figure 16.a)), which
indicates that each optimal equilibrium is actually reached about 1/3 of the times.
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1 1

1 5 0

2 0 20

Figure 17: Payoff for a zero-sum game.

(1, 1) (1, 2)

(2, 1) (2, 2)

Figure 18: Best-response cyclic graph.

4.0.6 Cyclic game

Finally, we present a two-player, zero-sum game with no pure Nash equilibrium. The payoff
function for the game is presented in Figure 17. Since this game has no pure Nash equilibrium, it
cannot be weakly acyclic, as verified from the best-response graph in Figure 18. Therefore, it is not
expected that our algorithm converges to an equilibrium, since the algorithm can only converge to
pure strategies (and the equilibrium for this game is a mixed one).3 We remark, however, that the
Nash equilibrium for this game corresponds to an expected reward of 8 for player 1 and of −8 for
player 2.

We applied our algorithm to the game, running 1000 independent Monte-Carlo runs, each
consisting of 900 plays of the game. The results are depicted in Figure 16.

0 100 200 300 400 500 600 700 800 900
−5

0

5

10

15

20

R
ew

ar
d 

(p
la

ye
r 

1)

0 100 200 300 400 500 600 700 800 900
−20

−15

−10

−5

0

5

R
ew

ar
d 

(p
la

ye
r 

2)

Time (steps)

1

2

1

2

0

20

40

60

80

100

Player 2
Player 1

P
er

ce
nt

ag
e 

of
 fi

na
l p

la
ys

a) Evolution of expected payoff; b) Limit strategies.

Figure 19: Learning performance in the cyclic game.

Notice in Figure 19.a) that the average payoff received by player 1 converged to about 5 (and to
−5 for player 2). This means that the algorithm converged to the pure strategy (1, 1) as observed
in Figure 19.b). Curiously, this is the pure strategy “closest” to the actual Nash equilibrium for
the game.

5 Conclusions

In this work we generalized adaptive play [22] to situations where actions and payoffs are not
observable. We showed that our algorithm converges with probability 1 to a (pure) Nash equi-
librium if it exists. However, if no (pure) Nash equilibrium exists, and as seen in the example of
the cyclic game, the algorithm may eventually converge to the pure strategy which is “closest” to

3The Nash equilibrium for this game consists on the mixed strategy that plays action 1 with a probability 0.8
and action 2 with probability 0.2.
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a mixed strategy Nash equilibrium for the game. Our algorithm, independent adaptive learning,
proceeds as in standard adaptive play by using incomplete sampling of finite length history of
past actions/payoffs. To handle the lack of action observability, the algorithm requires infinite
exploration to avoid getting “stuck” in non-equilibrium strategies. We provided a formal proof
of convergence and some experimental results obtained with our algorithm in several games with
different properties.

We are interested in extending the independent adaptive learning algorithm (or a variation
thereof) to multi-state problems, such as Markov games. We are also interested in applying the
algorithm to real world situations with a large number of agents with large action repertoires.
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