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Abstract

In this report we describe a new POMDP algorithm, denoted TEQ-MDP, which computes
the optimal policy of a modified MDP and uses the obtained optimal solution to compute the
action for the POMDP, as a function of the belief-state. The modified MDP includes state
entropy information (transition entropy) in its reward structure so as to value actions that
gather information. This algorithm is suitable for real-time implementation, since the main
computational burden can be done off-line.

We present the results from several tests in example-environments from the literature
and compare the performance of the TEQ-MDP algorithm with the performance of another
heuristic method (Q-MDP). In the various situations where Q-MDP presents near-optimal be-
haviour, the TEQ-MDP algorithm performs no worse. Furthermore, TEQ-MDP also presents
near-optimal performance in particular cases where the Q-MDP algorithm clearly fails.

1 Introduction
When interacting with an environment, an agent is often faced with the situation where a decision
must be taken in order to complete some task. This happens in different research fields, from
classical control theory (where the agent is the controller and the environment is the controlled
system) to intelligent robotics (where the agent is the robot and the environment is its physical
surrounding).

If the completion of such task critically depends on the decision, this becomes a critical step in
the process. In order to take the best possible action, the agent should consider all the consequences
of each possible action, so as to choose properly. The “usefulness” of an action depends on two
main aspects: the effects of such action on the environment, and how these effects contribute (or
not) to the correct execution of the task.

In order to predict the effects of a particular action in the environment, the agent must have
access to a model of the environment. However, in many situations, even the most elaborate model
will not be able to predict completely the consequences of every action. As such, some models
were introduced which make use of probabilities to describe the transitions on the system.

In some cases, the complete past history of the system is summarized in its current state. The
systems in which this property is verified are said to have the Markov Property and are named
Markov Chains1. This property is not an unreasonable demand, and experience shows that many
system models actually verify the Markov Property. A sequential task in an environment which
can be modeled as a Markov Chain, is called a Markov Decision Process (MDP)2.

1For a formal definition of Markov Chains, see [CL99].
2For a complete review on Markov Processes, see [Mur02].

1
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In a Markov Decision Process, the agent acts in successive time instants based in the current
state of the environment in order to meet some optimality criterium. However, if the current state
is unknown and the agent has available only an indirect observation of it, the elegant theory and
effective algorithms developed for Markov Decision Processes are, in general, not applicable.

The control of one of such systems, where the agent has available only partial information
regarding the state of the environment, is referred to as Partially Observable Markov Decision
Processes (POMDP). POMDPs model a wider range of systems, in a more realistic setting than that
of simple MDPs. However, this added modelling ability comes at a significant cost in complexity.

In this report, we propose a new algorithm, named as TEQ-MDP, that computes a heuristic
POMDP policy, using a modified concept of entropy. The algorithm seeks to cope with the com-
putational drawback issues regarding POMDPs presented by most of the methods proposed in the
literature. This is done by using the solution of a fully observable Markov Decision Process to
compute the policy in the POMDP.

As already referred, in a POMDP, the actual state of the system is not fully available to the
agent and, sometimes, the best action to take seeks to determine with higher degree of accuracy the
current state of the system (which is unnecessary in any MDP). In other words, sometimes the best
action to take is an information-collecting action. As such, we have used a modified MDP which
includes what we called transition entropy in its reward structure. Transition entropy assigns, in
our modified MDP, a “value” to each observation which, in turn, allows the agent in the modified
MDP to distinguish between two actions not only based on their reward but also based on the
information they gather. The optimal solution of this modified MDP is then used to compute
the action that the agent should take in each time instant. In this computation, the algorithm
proposed in this report applies a procedure similar to the Q-MDP algorithm procedure, using the
transition entropy in the modified MDP. This motivates the name of the algorithm, Transition
Entropy Q-MDP, TEQ-MDP for short.

Notice that, since the MDP solution can be computed straightforwardly from the MDP pa-
rameters, it can be performed off-line. This means that, since the determination of this solution is
responsible for the main computational load of the proposed algorithm, the TEQ-MDP algorithm
is suitable for real-time implementations.

We present the results of several tests, where the proposed algorithm was used in some known
literature examples, and compare its performance with other heuristic approaches also from the
literature. The various examples illustrate the near-optimality of the TEQ-MDP algorithm in the
different settings tested. In particular, the TEQ-MDP algorithm is shown to overcome obvious
limitations presented by the Q-MDP algorithm, proving to provide near-optimal results in all
examples tested.

There is a fair amount of work on MDPs and POMDPs. In Section 2 we provide a brief
overview of the work in this area, outlining the major contributions and drawbacks of several
methods proposed in the literature. In Subsection 2.1 we present some notation used in the report.

Section 3 provides a quick overview on Markov Decision Processes and related notation. It
also briefly reviews the concepts of policy and value-function and discusses solution techniques for
MDPs.

Section 4 reviews a more general control setting for Markov Chains, the Partially Observable
MDPs. The related notation is presented, and a brief discussion on POMDP solutions is conducted.

Section 5 presents a detailed description of the approach followed in order to solve POMDPs,
by exploring known solutions, and then formally introduces the new proposed TEQ-MDP algo-
rithm, where the concept of transition entropy is defined and applied.

Section 6 presents some experimental results of tests conducted on several different partially
observable environments. The performance of the proposed TEQ-MDP algorithm is discussed.

Finally, in Section 7, we conclude the report by presenting the most important conclusions of
our work as well as directions for future research.
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2 Previous Work
This section intends to provide a non extensive review on MDP and POMDP literature. The
POMDP literature presented covers most of the work in the area and the most significant POMDP
results. We also present some references of generic review papers on MDPs and MDP solution
techniques, since MDP results will play an important role in the later developments.

Markov Decision Processes have given rise to much research work, as they are the basic frame-
work for most of the significant work on Reinforcement Learning (RL). In fact, Reinforcement
Learning aims to develop algorithms for agents to experimentally “learn” the solution for a given
MDP. The paper [Mur02] provides a good review on Markov Decision Processes and corresponding
algorithmic solutions. For a good introduction to Reinforcement Learning and Markov Decision
Processes, see the book by Barto and Sutton [SB98] or the review paper [KLM96].

If MDPs are a thoroughly studied control framework, with good known algorithmic solutions, its
Partially Observable counterparts present a much more complex challenge to the research commu-
nity. In fact, the introduction of partial observability leads to a significant increase in complexity,
and the wide knowledge regarding MDPs brings no help to this situation.

General reviews of POMDP solution techniques can be found in [Cas94, Abe03a] and [Mur00].
Cassandra’s PhD thesis, [Cas98], provides a good technical coverage of POMDPs and corresponding
solution techniques.

Algorithmic solutions for POMDPs can be divided in two main categories: exact solutions,
which seek to exactly determine the optimal policy, and approximate solutions, which use approx-
imations in intermediate steps in order to simplify the computational burden.

Examples of exact solution techniques can be found in many POMDP works, such as [Cas94,
Lit94, LCK95b, CLZ97]. However, exact solution methods for POMDPs generally make use of
more or less complex dynamic-programming algorithms in each iteration, and have revealed to be
computationally untractable for systems with more than a few dozen states.

Approximate solution methods seek to overcome this evident problem, either by using approx-
imations in the intermediate computations or by using simplifying assumptions. These methods,
although yielding solutions with sub-optimal performance or limited applicability, seek to over-
come the prohibitive computational complexity presented by exact methods. Examples of some
approximate methods can be found in [Abe03a, Abe03b, PR95, CKL94, MS99, GKP01, ST01].

Both the exact and the approximate methods seek to develop algorithms based on well derived
mathematical foundations. However, in the literature, some more heuristic algorithms have also
been developed. Some examples can be found in [CKK87, RT99, RGT05].

Finally, the adequacy of Reinforcement Learning methods to MDPs has also lead the RL com-
munity to take interest on extending RL methods to the POMDP framework. Different Reinforce-
ment Learning approaches to POMDPs can be found in [Has02, Per02, LCK95a]. Additionally,
[SJJ94] introduces a slightly modified POMDP formulation, leading to a Reinforcement Learning
algorithm in [JSJ95].

2.1 Notation on Sets and Probabilities
In this subsection we introduce notation used in the remaining of this report.

Let X be a discrete set. A probability function on X is a function P : X −→ [0, 1] such that,
for U ⊂ X, P (x ∈ U) is the probability of occurrence of the event U , i.e., the probability of the
random variable x taking a value in U . This probability P (x ∈ U) will be denoted as P (U). In
particular, if U = {u}, this will often be denoted as P (u).

Suppose, now, that X is a finite set X = {x1, . . . , xn}. Let P be a probability function on
X and define the probability vector πP ∈ [0, 1]n such that its ith component πP (i) is given by
πP (i) = P (xi). Since the vector πP allows the computation of the probability of any event U ⊂ X,
it will abusively be confounded with the probability function P . Hence, we will write πP (x) or
simply π(x) when P is clear from the context, to represent P (x).

The set of all probability functions over a set X will be denoted Π(X). Clearly, any probability
vector π on X is an element of Π(X).
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3 Markov Decision Processes
A Markov Decision Process (MDP) is a control framework where an intelligent agent is faced with a
sequential task in an environment modeled as a Markov Chain. Since the understanding of Markov
Decision Processes is of vital importance in the upcoming developments, in this section we provide
a brief formal overview of such processes.

3.1 The Decision Process
Consider an agent interacting with an environment in order to complete some predefined task.
This task will, indirectly, dictate the behavior of the agent. A parallel between this nomenclature
and the control nomenclature is illustrated in Figure 1.

 
 

AGENT 
(Controller) 

 
ENVIRONMENT 
(Controlled system) 

Interaction
(Control) 

Figure 1: Parallel between the AI and the Control nomenclature.

The system3 can be in one of a discrete number of states. The set of all possible states will
be denoted as S. At each time instant, the agent will choose an action a from a set A of possible
actions. Both sets S and A are considered finite. In this report, we will refer to state s ∈ S as the
state of the system, the state of the process, the state of the environment or the state of the agent,
interchangeably.

The actions taken by the agent obviously have some effect on the state of the environment.
That influence is described by a probability function P , where

P [s(t + 1) = s′ | a(0, . . . , t), s(0, . . . , t)] (1)

denotes the probability of the system being at state s′ at time instant t + 1, given that the past
history of actions from time instants 0 to t is a(0, . . . , t) and the past history of states is s(0, . . . , t).

However, in a Markov Decision Process, the environment is modeled as a Markov Chain, i.e.,
it is assumed that the probability in (1) verifies the Markov property,

P [s(t + 1) = s′ | a(0, . . . , t), s(0, . . . , t)] = P [s(t + 1) = s′ | a(t), s(t)]. (2)

Equality (2) means that the state at time t + 1 depends only on the state at time t and on the
action taken at time t. The probabilities in (2) are called transition probabilities and are denoted
in a more compact way as P (s′|s, a) instead of P [s(t + 1) = s′ | s(t) = s, a(t) = a]. Given the
transition probabilities, define the transition probability function

T : S ×A× S −→ [0, 1]
T (s, a, s′) = P (s′|a, s). (3)

The “line of action” of the agent (i.e., the agent’s choice of actions) has a purpose. In fact, every
time the agent takes some action a in some state s it will receive a reward, denoted by R(s, a)4.

3In the remainder of this report, we will refer to the pair agent-environment as the system.
4In the most generic formulation, R(s, a) can be considered as being stochastic. We will work under the simplifying

assumption that R(s, a) is deterministic, emphasizing, however, that all remains valid if R(s, a) is random.
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The set of all possible rewards R(s, a), is called the reward structure of the MDP and it somehow
expresses, in terms of the parameters of the MDP, the “physical” goal of the agent.

From the point of view of the agent, the ultimate goal is usually the maximization of the
expected discounted cumulative reward5, defined as the expected value of the sum of all rewards
over time,

E

[ ∞∑
t=0

γtRt

]
, (4)

where Rt is the reward received at time t and γ is a discount factor 0 ≤ γ < 16.
From all stated, a MDP can be defined as a 4-tuple (S, A, T,R), where S is the state-space, A

is the action space, T represents the transition probabilities and R represents the reward structure.

3.2 MDP Solutions
Defining a “line of action” for an agent in an MDP implies defining which action to chose in each
state.

A deterministic policy is a function δ : S −→ A which deterministically maps the state space S
into the action space A.

Suppose that, at time t, the agent is at state st. What should the expected cumulative re-
ward be, in this situation, if the agent is following some policy δ? From (4), define the function
V δ : S −→ R as

V δ(st) = E

[ ∞∑
i=0

γiRt+i | st

]
=

= E

[
Rt + γ

∞∑
i=0

γiRt+i+1 | st

]
=

= R(st, δ(st)) + γE

[ ∞∑
i=0

γiRt+i+1 | st

]
, (5)

where V δ(st) is the value of being in state st when following policy δ. In other words, if, at some
time instant t, the agent is in state st and follows the policy δ from that time on, V δ(st) is the
expected discounted cumulative reward of the agent.

Using the properties of the expected value operator in (5), V δ(st) may be written as

V δ(st) = R(st, δ(st)) + γ
∑

st+1∈S

T (st, δ(st), st+1)E

[ ∞∑
i=0

γiRt+i+1 | st, st+1

]

which, due to the Markov Property, becomes

V δ(st) = R(st, δ(st)) + γ
∑

st+1∈S

T (st, δ(st), st+1)E

[ ∞∑
i=0

γiRt+i+1 | st

]
,

or, alternatively,
V δ(st) = R(st, δ(st)) + γ

∑
st+1∈S

T (st, δ(st), st+1)V δ(st+1). (6)

The use of (6) in an iterative algorithm to compute V δ for some policy δ is immediate. Such
algorithm is generally called Value Iteration (VI). Once the values of V δ are computed (using, for
example, the VI algorithm), it is possible to improve the policy δ and define a new policy, δ′, by
choosing, in each state s, an action a as

5In the literature it is possible to find different optimality criteria (see [SB98]).
6The use of the discount factor γ can be motivated in several ways, the simpler of which is in order to make the

summation in (4) converge.
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δ′(s) = arg max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V δ(s′)

}
. (7)

As described so far, the values of V δ used in (7) are the ones obtained after the VI algorithm
(using (6)) has converged. This iterative process of improving the policy δ is called policy iteration.

However, the policy iteration step may not occur, necessarily, after the convergence of the VI.
In fact, the maximization step described by (7) may use intermediate values for V δ. This procedure
is called generalized policy iteration and is defined by the following recursion in k.

Vk+1(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vk(s′)

}
. (8)

This iterative process will converge, when k −→ ∞ to the optimal value function V ∗, which
verifies

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

}
. (9)

Equation (9) is the Bellman optimality equation.
Knowing the optimal value function, V ∗, allows the assignment of a value to a state-action

pair. In fact, if state s has a value V ∗(s) when following the optimal policy, it is possible to define
a value for the state-action pair (s, a) as

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′), (10)

where Q∗(s, a) is the expected discounted cumulative reward of being in state s, taking action a
and following the optimal policy afterwards. From the previous, it is clear that,

V ∗(s) = max
a∈A

Q∗(s, a).

By knowing either V ∗ or Q∗, it is possible to compute the optimal policy δ∗ as

δ∗(s) = arg max
a∈A

Q∗(s, a) = arg max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

}
. (11)

The computation of either the optimal policy or the optimal value function in an MDP can
be programmed very efficiently using any dynamic programming package. Furthermore, it has
been shown that this can be done in polynomial time (for more details on the complexity of MDP
solution techniques, see [LDK95]).

For a detailed study of Markov Decision Processes and algorithmic solutions, see [Mur02, SB98,
KLM96].

4 Partially Observable MDPs
A Partially Observable Markov Decision Process is a MDP where the agent has no direct access
to the current state s of the environment, but, instead, has access to an indirect observation of
it. This limitation introduces significant difficulties in the process of defining what is an optimal
policy in this situation, and, mainly, in its computation. These issues will be explained in greater
detail in this section.



Institute for Systems and Robotics, Technical Report RT-601-05, February 2005 7

4.1 The Belief State
Consider a MDP defined by the 4-tuple (S, A, T,R) but suppose that, at each time instant t, the
agent has no access to the state s of the environment (it does not know, with certainty, its current
state). Instead, it makes an observation x ∈ X that depends on the state s and on the last action
a according to some probability P [x(t) = x | s(t) = s, a(t− 1) = a] = P (x|s, a). The set X is the
set of all possible observations and the probabilities P (x|s, a) are the observation probabilities, also
defined as a function

M : X × S ×A −→ [0, 1]
M(x, s, a) = P (x|s, a).

Therefore, a POMDP is a 6-tuple (S, A,X, T,R,M), where S, A, T and R are the MDP param-
eters, X is the observation space and M defines the observation probabilities.

The loss of observability in a POMDP generally implies the loss of the Markov Property, since
the current observation can not be related with the previous one without considering the underlying
state of the environment. This is a major drawback, since it implies that a control simply based
in the current observation may lead to an arbitrarily poor performance (for some examples, see
[SJJ94]).

To overcome this problem, the concept of belief state is introduced. A belief state π is a
probability function over the set of all states and indicates, at each time instant, the probability
of being in each of the states in S. This belief state, as will soon become apparent, captures all
the relevant aspects of the entire previous history of the process.

Suppose that at some time instant t the agent is at state st and knows it. If, after taking action
at, the agent observes xt+1 at time t + 1, the probability that it had moved to state s′t+1 is given
by

P (s′t+1|st, at, xt+1) =
P (s′t+1, xt+1|st, at)

P (xt+1|st, at)
=

P (xt+1|s′t+1, st, at)P (s′t+1|st, at)
P (xt+1|st, at)

,

which, by using the Markov Property, becomes

P (s′t+1|st, at, xt+1) =
P (xt+1|s′t+1, at)P (s′t+1|st, at)

P (xt+1|st, at)
. (12)

By using the law of total probabilities in (12), this probability can be written as

P (s′t+1|st, at, xt+1) =
P (xt+1|s′t+1, at)P (s′t+1|st, at)∑

s′′∈S P (xt+1|s′′t+1, st, at)P (s′′t+1|st, at)
=

=
P (xt+1|s′t+1, at)P (s′t+1|st, at)∑

s′′∈S P (xt+1|s′′t+1, at)P (s′′t+1|st, at)
. (13)

Finally, replacing the POMDP parameters in (13) leads to

P (s′t+1|st, at, xt+1) =
M(xt+1, s

′
t+1, at)T (s′t+1, at, st)∑

s′′∈S M(xt+1, s′′t+1, at)T (s′′t+1, at, st)
. (14)

Notice however that, generally, the agent will not know its state st but, instead, it knows the
probability of being in st, πt(s). The inclusion of this probability in (14) leads to the update
equation for the belief state πt+1 from the value of the belief state πt, for action at and observation
xt+1, i.e.,

πt+1(s′)|at,xt+1 =
M(xt+1, s

′, at)
∑

s πt(s)T (s, at, s
′)∑

s,s′′ πt(s)T (s, at, s′′)M(xt+1, s′′, at)
. (15)
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4.2 POMDP Solutions
As previously referred, finding the exact optimal policy for a POMDP is still a computationally
untractable problem except for cases with a state space of not too large dimension.

However, it is possible to assign a value to belief states and, as in MDPs, determine a recursion
similar to that of (6). Define a policy δ(π) as a mapping from Π(S) to A. It is possible to assign
a value to a belief state πt, according to policy δ as

V δ(πt) = E

[ ∞∑
i=0

γiRt+i|πt

]
. (16)

As in MDPs, where V δ(s) was the expected discounted cumulative reward of starting at state
s and following the policy δ, V δ(πt) is the expected discounted cumulative reward of starting in
belief state πt and following the policy δ afterwards. Notice, however, that a policy (as a function
of the belief-state π) hasn’t still been properly defined.

Equality (16) can be expanded by repeating the procedure used in Section 3.2, yielding the
following recursion

V δ(πt) =
∑

s

πt(s)R(s, δ(πt)) + γ
∑

x,s,s′

πt(s)T (s, δ(πt), s′)M(x, s′, δ(πt))V δ(πt+1). (17)

There are two main difficulties in using (17) as a recursion, both coming from the fact that
the belief space, Π(S), is a continuous set. The first arises from the fact that the policy δ is
now a function from set Π(S), which is continuous, into A. This implies that its representation
is much more complex that in the MDP case. The second difficulty arises from the fact that a
continuous belief state implies that the computational burden necessary to iterate expression (17)
is prohibitive.

In the literature, the algorithms referred to as exact compute the exact optimal policy for the
POMDP. In order to achieve this, some of these algorithms (e.g., Incremental Pruning, see [CLZ97,
Cas98]) iterate (17) by subdividing this computation in the computation of simpler, intermediate
functions. Furthermore, all the exact algorithms make use of the properties of this value function,
in particular its convexity (see [Cas98, Cas94]).

In spite of all the work in POMDPs, the algorithmic solutions for exactly solving POMDPs
still suffer from severe limitations mainly due to the complex computation involved in any iterative
process using (17).

In Section 5, a new heuristic solution method is proposed which, although still implying some
computation, manages to be more efficient than known exact POMDP algorithms.

5 Heuristic Policies
In this section, we approach the problem of relating a POMDP solution with the solution of the
underlying MDP. This will motivate the TEQ-MDP algorithm, which seeks to overcome some
limitations of the known Q-MDP algorithm.

In order to do this, a simple and intuitive example is presented, which will provide a clearer un-
derstanding of the idea behind the Q-MDP algorithm. The main problems regarding this algorithm
are then explored, and the alternative method, the TEQ-MDP algorithm, is presented.

5.1 Hitch-hiking
Consider the following hypothetical setting:

• Bob (B) is a hitch-hiker who is lost, somewhere in Europe. He intends to go to Portugal. He
knows reasonably well the geography of Europe and the different landscapes, but he cannot
read.

• Adam (A) is a driver going from Finland to Portugal (see Figure 2). He knows how to read.
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They both want to minimize the travelling costs, by arriving in Portugal as fast as they can7.
The problem, from Bob’s point of view, can be modeled as a POMDP, since he cannot know

exactly the country where he is (he cannot read the signs), but can only guess it from the appearance
of the landscape, i.e., he can guess in which country he is from observing the landscape.

 

PORTUGAL 

FINLAND 

 

Figure 2: Map of a possible journey for the travelers.

From Adam’s point of view, the problem can be modeled as a MDP, since he can read the signs
and, hence, knows exactly in which state he is.

If, for some unnatural event, Bob comes to know that, somewhere ahead, Adam will give him
a ride, what should Bob’s line of action be?

Since both Bob and Adam are seeking to minimize the traveling costs, from the moment Bob
rides with Adam, they will both take the best possible path (which is the same for both). This
path is, obviously, the one that Adam will take.

As such, if before catching his ride, Bob believes to be in a given country (say Poland), the
best he can do is move towards the country in which it would be best for Adam to give him a ride.
However, when deciding, Bob should take into account the possibility that he may not be in Poland.

5.2 Optimistic Guessing
Consider that the role of Bob is played by some agent B, while Adam is implemented through
agent A. Consider agent B at some time instant, T . The belief state, at time T , is πT . Agent
B wants to choose which action to take at time T such that the expected discounted cumulative
reward is maximal. This is the typical POMDP formulation.

Suppose, however, that, at time T + 1, agent B will catch a ride from agent A, implying that,
for t > T , its framework turns to a typical MDP. This, in turn, means that if A follows the optimal
MDP policy, the value of A being in state s at time T + 1 is V ∗(s), as seen in Section 3.

7Although in this formulation both travellers seek the minimization of a cost, instead of the maximization of a
reward, the two formulations are dual, i.e., you can solve any of them by solving the other.
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If, at the same time instant T + 1, agent B believes to be at state s with probability πT+1(s),
the value of the belief state will be, at time instant T + 1,

V (πT+1) =
∑
s∈S

πT+1(s)V ∗(s). (18)

From the point of view of agent B, the value of taking action a at the current time T , denoted
as V (a|πT ), can now be computed from (18) and (10) by using the expression

V (a|πT ) =
∑
s∈S

πT (s)R(s, a) + γ
∑

s,s′∈S

∑
x∈X

πT (s)T (s, a, s′)M(x, s′, a)V (πT+1), (19)

where πT+1 is computed from πT (using (15) with respect to action a and observation x). It should
be pointed out that (19) cannot be used as a recursion on V , since the value function thus obtained
would be that of equation (18) which, as explained ahead and proved in Appendix A, only verifies
equation (17) for an informed policy8.

By maximizing (19), B is able to take the best possible action at time T ,

aT = arg max
a∈A

8<:X
s∈S

πT (s)R(s, a) + γ
X

s,s′∈S

X
x∈X

πT (s)T (s, a, s′)M(x, s′, a)V (πT+1)

9=; . (20)

This sort of action is based in some sort of optimistic guessing, since agent B guesses, in
a somewhat optimistic way, that the system will be completely observable from time T on. In a
general situation, however, this is not the case. It would be of interest to determine the performance
of B when deciding action aT from (20), even if the system will not become fully observable. This
analysis will be conducted next.

5.3 Q-MDP and Optimistic Guessing
Consider a Markov Chain in which an agent is assigned a predefined policy δ. This is not a Markov
Decision Process, since the agent knows the correct “line of action” from the start. Given the desired
policy δ, it is straightforward to append a reward structure to a Markov Chain in order to make
it an MDP with optimal policy δ (it suffices to make R(s, a) = 1 if a = δ(s) and 0 otherwise).

Suppose, now, that an agent is assigned a policy to execute in a Markov Chain with partial
observability. By assigning the proper reward structure to the Markov Chain, is it possible to
ensure that the agent will behave as desired, in the resulting POMDP?

This question, as well as the hitch-hikers example, leads to an interesting problem, regarding
the relation between the optimal policy in a POMDP and the optimal policy in the underlying
MDP.

A quick glance over the algorithmic solutions proposed in the literature suffices to confirm
that in most of these solutions the computation of the POMDP policy makes no use of the MDP
solution. Intuitively, it would make sense if the two policies were closely related, since one would
expect that, in a POMDP, the agent would try to follow, as closely as possible, the optimal MDP
policy. In fact, notice that if the observations allow to determine the current state of the Markov
Chain unambiguously, the problem resumes to a typical MDP and, hence, the agent should follow
the optimal MDP policy.

In Chapter 6 of [Cas98], some heuristic methods are described which make use of the optimal
MDP value function. These methods, as argued in [Cas98], do not yield an optimal solution, since
all of them disregard uncertainty in different ways. Amongst the most elaborate of these methods,
the Q-MDP, makes use of the optimal Q function (as defined in (10)) and computes a policy δ(π)
by maximizing

δ(π) = arg max
a∈A

∑
s

π(s)R(s, a) + γ
∑
s,s′

π(s)T (s, a, s′)V ∗(s′)

 . (21)

8An informed policy (like the MDP policy), is a policy which maps the actual state s of the system into the
action set.
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By comparing (17), (20) and (21), it is noticeable that all three equations have a similar
structure. By looking carefully into the equations, it is perceivable that such similarities go beyond
the structure of the equations.

In fact, some manipulation over the summations leads to the following conclusion:

Proposition 5.1. Consider a POMDP (S, A,X, T,R,M) and let V ∗(s) be the optimal value-
function for the underlying MDP given by (S, A, T,R). Then, the Q-MDP policy and the Optimistic
Guessing policy correspond to the same policy, i.e.,

arg max
a∈A

∑
s

π(s)R(s, a) + γ
∑
s,s′

π(s)T (s, a, s′)V ∗(s′)

 =

= arg max
a∈A

∑
s

πT (s)R(s, a) + γ
∑

s,s′,x

πT (s)T (s, a, s′)M(x, s′, a)V (πT+1)

 , (22)

where V (πT+1) =
∑

s πT+1(s)V ∗(s).
Furthermore, supposing that the agent would follow the optimal MDP policy for all time instants

t > T , the expected value of the belief state π at time T is
∑

s πT (s)V ∗(s).

Proof : See Appendix A. �

5.4 Entropy
A deeper analysis of the Q-MDP algorithm will reveal that, in general, it will not choose an action
a just to collect information, as argued in [LCK95a]. If, in an MDP, it happens that the actions
“look around” and “do nothing” yield the same reward and leave the state unchanged, they would
have the same value under the optimal policy. However, in a POMDP, the “look around” would,
in many situations, be probably preferred to the action “do nothing”. In fact, the action “look
around” could allow the agent to disambiguate the actual state of the system, which is preferable
to “do nothing”.

In order to cope with such a problem in the Q-MDP approach, some alternatives have been
proposed which use the information that an action may, potentially, bring to the agent (see [Cas98]
for a brief review).

In order to measure the difference between two actions in terms of collected information, the
concept of entropy was introduced (see [Cas98]), which seeks to quantify the uncertainty of a given
belief state π.

Definition 5.1 (Entropy). Given a belief state π, the entropy of π, H(π), is defined as

H(π) = −
∑
s∈S

π(s) log(π(s)). (23)

The entropy of a belief state takes values between 0 (for a situation in which there is a state s
with π(s) = 1) to some maximum, when all the states are equally probable. In order to normalize
the maximum value to 1, the concept of normalized entropy is derived.

Definition 5.2 (Normalized Entropy). Given a belief state π, the normalized entropy of π, H(π),
is defined as

H(π) =
H(π)

log(|S|)
, (24)

where |S| is the number of elements of S.

Entropy-based methods will yield, in some cases, results which are superior to Q-MDP. However,
in other situations, their performance is poor when compared with the Q-MDP algorithm. This is
because entropy-weighting methods and dual-mode algorithms assume that the point of maximum
entropy corresponds to the point of minimum value, as argued in [Abe03a, Abe03b]. However, even
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though the value function is, indeed, convex, the point of minimum value need not correspond to
the point of maximum entropy.

We will now develop a methodology which overcomes the main problems of Q-MDP. In order to
do so, we will use a weighted entropy method which will be described in Subsection 5.5. However,
in order to overcome the inconveniences arising from blind minimum-entropy search, a new entropy
measurement is needed which quantifies the entropy associated with each transition in the POMDP.
The expected entropy and the expected reward arising from each transition can then be combined
so that an “informed” entropy minimization criterium can be defined.

First of all, it is necessary to define the entropy associated with a single transition. This
transition entropy must provide a measure on the entropy gain/loss associated with a particular
transition. A transition will be represented by a triplet (s, a, x), where s is the state at some time
t, a is the corresponding action and x is the observation at time t + 1, after the transition has
occurred.

A first possibility would be to consider the agent to be at state s at some time instant t with
probability 1. Then, by taking action a and observing x, the belief state πt+1 could easily be
computed using (15) and we could define the transition entropy associated with the transition
(s, a, x) as the normalized entropy of the obtained belief-state, πt+1. However, this measure may
lead to values of entropy which do not convey the intended information.

In fact, suppose that an agent is at some state s at time instant t from which all actions lead
to a state s′ and some observation x with probability 1. The normalized entropy of the associated
belief-state πt+1 would be 0. However, if the agent does not know in which state it is (and this
is the situation in which entropy information may be of use), the belief state resulting from that
same transition may yield an entropy of 1! The transition entropy, as it was defined, does not
distinguish between the two situations.

Suppose then that the belief state at some time instant t corresponds to a uniform probability
function over all states, πt(s) = 1

|S| , for all s ∈ S. Then, H(πt) = 1. If the agent takes action a

and observes x, the belief state at time t + 1 will be

πt+1(s′) =
∑

s∈S T (s, a, s′)M(x, s′, a)∑
s,s′′∈S T (s, a, s′′)M(x, s′′, a)

. (25)

Let H(a, x) be the normalized entropy of the new belief state, i.e.,

H(a, x) = H(πt+1) =

= − 1

log(|S|)

P
s,s′∈S T (s, a, s′)M(x, s′, a)P

s,s′′∈S T (s, a, s′′)M(x, s′′, a)
log

 P
s∈S T (s, a, s′)M(x, s′, a)P

s,s′′∈S T (s, a, s′′)M(x, s′′, a)

!
. (26)

The value of H(s, a) measures the mean entropy associated with a transition under action a in
which x is observed. This happens, for each s ∈ §, with probability P (x | s, a) as given by

P (x|s, a) =
∑
s′∈S

T (s, a, s′)M(x, s′, a). (27)

It is now possible to introduce the new concept of transition entropy.

Definition 5.3 (Transition Entropy). Given an action a and an observation x, the transition
entropy of action a and observation x in state s is defined as

TH(s, a, x) =


1, if P (x|s, a) = 0,

H(a, x)P (x|s, a), otherwise.
(28)

Equation (28) defines an entropy measure associated with a transition represented by a state-
action-observation triplet (s, a, x).

One important remark is now in order. Notice that a special distinction is made for the case
where P (x | s, a) = 0. In fact, if such distinction were not made, triplets (s, a, x) such that
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P (x | s, a) = 0 would yield minimum entropy and would, hence, be considered valuable transitions
in terms of information gathering. However, P (x | s, a) = 0 implies that the triplet (s, a, x)
corresponds to a transition that never occurs and, as such, should not be taken into account in
terms of information gathering.

The concept of transition entropy just introduced will play a central role in the algorithms
introduced in Section 5.5, by assigning a “value” (in terms of information) to each action in each
state.

5.5 The TEQ-MDP algorithm
In Definition 5.3, the concept of Transition Entropy was introduced. Transition Entropy TH(s, a, x)
provides a measure of the uncertainty inherent to a transition under action a followed by observation
x, when originally in state s. This measure will now be introduced in the reward structure of
a Markov Decision Process and the corresponding optimal policy will be used to compute the
POMDP policy.

This algorithm, denoted TEQ-MDP, is the main contribution of this report, and corresponds
to an adaptation of the Q-MDP algorithm.

Recall from the previous subsection that transition entropy measures the information/uncertainty
resulting from a transition (s, a, x). Weighted entropy methods and dual-control methods also
consider the entropy of the belief-state when choosing which action to take. However, as seen
in Subsection 5.4, these methods admit that the maximum-entropy and the minimum value are
attained at the same point of the belief space and, as such, alternate between “blind” entropy
minimization and value maximization.

In order to combine transition entropy and reward information, define the transition reward
R(s, a, x) as

R(s, a, x) = maxa′

∑
s′

T (s, a, s′)M(x, s′, a)R(s′, a′), (29)

R(s, a, x) is a myopic expected reward arising from a single transition (s, a, x). This transition
reward is now combined with the transition entropy TH(s, a, x) to yield

RN (s, a) =
1
|X|

∑
x

R(s, a, x)(1− TH(s, a, x)). (30)

RN combines the mean expected transition reward and the mean expected transition entropy
in a new reward function RN which, by defining a new MDP (SN , AN , TN , RN ), where the state-
space, action-space and transition function remain unchanged, i.e., SN = S, AN = A and TN = T ,
yields an optimal Q-function which will be denoted Q∗

N (s, a).
Notice that if TH(s, a, x) measures the uncertainty in the transition (s, a, x), the value of

(1−TH(s, a, x)) measures the information (in terms of belief-state) “gathered” in the corresponding
transition. By weighting the information collected in each transition (given by (1 − TH(s, a, x)))
with the corresponding average transition reward (from (30)), we define a value for the information
associated with each transition. By averaging this value over all measurements, we obtain the value
(in terms of information) associated with action a in state s, defined by (30).

The optimal Q-function for the new MDP, Q∗
N is given by

Q∗
N (s, a) = RN (s, a) + γ

∑
s′

T (s, a, s′)V ∗
N (s′), (31)

where V ∗
N (s′) is the optimal value function for the new MDP.

Suppose, now, that at time instant t, the belief-state is πt. Clearly, if the agent knows exactly
in which state it is, i.e., if πt(s) = 1 for some s, the agent should act as in the original MDP, since
it does not need to collect information. On the other hand, if the uncertainty in the belief-state is
large (suppose, for example, that π(s) = 1/|S|, for all s), then the agent should take an action in
order to gain some information.
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This leads to the action-selection procedure in the TEQ-MDP algorithm. Given the optimal
action-value function of the original MDP, Q∗ and of the modified MDP, Q∗

N , the agent will chose
action aH according to the heuristic

aH = arg max
a∈A

{∑
s

π(s)
[
H(π)Q∗

N (s, a) + (1−H(π))Q∗(s, a)
]}

. (32)

The TEQ-MDP algorithm is shown in Table 1, making explicit which part of the algorithm is
computed off-line and which part is computed on-line.

Table 1: TEQ-MDP algorithm.

OFF-LINE
1. Compute Q∗(s, a) for (S, A, T,R);
2. Compute R(s, a, x) using (29) for all s, a and x;
3. Compute RN (s, a) using (30) for all s and a;
4. Compute Q∗

N (s, a) for (S, A, T,RN ).

ON-LINE
a. Given πt, compute H(πt);
b. Compute Q(s, a) = H(π)Q∗

N (s, a) + (1−H(pi))Q∗(s, a);
c. Choose action aH = arg maxa {

∑
s π(s)Q(s, a)};

d. Compute πt+1 and return to a.

The proposed method, which will be called Transition Entropy Q-MDP (TEQ-MDP) seeks to
overcome some limitations of the Q-MDP algorithm. In particular, it is known that the Q-MDP
algorithm will, in general, disregard information-collecting actions, which can lead to arbitrarily
poor performance. The TEQ-MDP seeks to overcome that limitation by including state entropy
information in the MDP reward structure.

It is evident that this comes at some cost, since the Q-MDP uses the solution of a |S|-state
MDP, while TEQ-MDP uses the solution of two |S|-state MDPs. This will generally lead to a small
increase in the computational effort required. However, in run-time, the TEQ-MDP only needs the
MDP solutions to choose the POMDP action. This makes it suitable for run-time implementation,
like the Q-MDP algorithm, since, at each time instant, it only requires the belief-state update, the
computation of the corresponding entropy and its product by matrices Q∗ and Q∗

N , which are all
simple operations.

In Section 6 we present the results of several experiments using examples from the POMDP
literature (see [Cas98, PR95, LCK95a]).

6 Results
In this section we present results obtained by the TEQ-MDP algorithm, and compare them with
those obtained with the Q-MDP and with the optimal behavior in the underlying MDP.

In Subsection 6.1 we briefly describe the test-environments. The results and the corresponding
analysis of performance are discussed in Subsection 6.2.

6.1 Test environments
In this subsection we present a brief description of the several examples used in the tests.

We will not get into details such as transition probabilities, observation probabilities or rewards,
except for the guessing game situation and for the large state-space map. For those technical details,
see [LCK95a].
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6.1.1 The Shuttle problem

Consider the following problem. Somewhere in space, there are two stations, which in Figure 3 are
denoted as Red Station and Blue Station.
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Figure 3: Representation of the Shuttle example.

A shuttle will be traveling between the two stations, supplying both of them with goods of
need. Goods for the Red Station can be purchased in the Blue Station and vice-versa.

Since the shuttle is supposed to re-supply in each station before moving to the next station, the
stations will be called Least Recently Visited Station (LRV) and Most Recently Visited Station
(MRV). Whenever the shuttle docks at a station, it becomes the MRV Station and the other
becomes the LRV station.

The goal of the shuttle is to always visit the LRV station. In order to do so, it has 3 available
actions. Move forward, turn around and back-up. And, as such, there are 8 possible states (seen
in Figure 3):

• Docked in MRV;

• Next to MRV, facing MRV;

• Space, facing MRV;

• Next to LRV, facing MRV;

• Next to MRV, facing LRV;

• Space, facing LRV;

• Next to LRV, facing LRV;

• Docked in LRV.

The agent will receive a reward for each successful docking in the LRV station, and a penalty
for bumping into any of the stations.

6.1.2 The Tiger problem

This problem was first introduced in [Cas94], and it is an interesting problem, since the underlying
MDP has a trivial solution. However, in the POMDP setting where it is formulated, the problem
presents several interesting features, since the optimal solution will require information gathering
actions.

Consider a contest where the player is facing two doors (Figure 4).
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Figure 4: Representation of the Tiger example.

Behind one of these doors there is a monetary reward of 10′000 euros and behind the other
there is a starving tiger, waiting to jump upon the first careless individual who dares to open such
door. The player estimates that opening the door with the tiger behind will cost him 100′000 euros
in hospital bills, besides all the pain and suffering.

The player is to choose between one of the two doors, knowing that he can try to listen the
noise that tigers usually do. This, however, will cost him 1′000 euros each times he decides to
listen (and he can do this as often as he wants). Listening behind doors is subject to errors, as the
player may listen to the tiger behind the wrong door.

6.1.3 The Part Painting problem

Consider the supervisor in a production queue of a finishing facility, where some sort of parts are
painted and shipped (see Figure 5).
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Figure 5: Representation of the Part Painting example.

Sometimes, these parts arrive from the production facility with flaws, which are often visible
because of some sort of blemish appearing in the flawed parts. The parts which are flawed should
be rejected, and the good ones should be painted and shipped.

There are some nuances in this process: the company loses money if a flawed or not-painted
part is shipped or if a good and painted part is rejected. However, there is the possibility that
the painting process is unsuccessful or, if it is successful, the blemishes in the flawed parts will
disappear.

The supervisor has, then, four possible actions: inspect the part, paint it, ship it or reject it.
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Inspection will allow to determine with some degree of accuracy whether a part is good or flawed,
as long as the part is not painted.

6.1.4 The 4× 4 and 4× 3 Grid problems

In these problems, represented in Figure 6, the purpose is similar, although they present slight
differences in some details. The agent moves around in the environments depicted in Figure 6,
trying to achieve the maximum reward.
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Figure 6: Representation of the 4× 4 and 4× 3 Grid examples.

The numbered cells represent the possible states. In both problems the agent has available 4
actions corresponding to the 4 directions: North, South, East and West.

In the 4×4 grid problem, the transitions corresponding to each of these actions are deterministic.
The agent is then supposed to get to the goal state, marked with a star. Except for that state, no
other observation is available: either the agent observes nothing or the goal. The goal rewards the
agent with +1.

In the 4×3 grid problem, there are two marked states, one of which rewards the agent with +1
and the other penalizes the agent with −1. However, the actions are not deterministic, as in the
4× 4 situation. When the agent takes an action (say North, for example), there is the possibility
that it will move in an orthogonal direction (East and West, in this case). There is a gray block in
the grid, which can be interpreted as an obstacle. Finally, the agent is able to detect walls on the
left side and/or on the right side of each cell (for example, when in cell 5, the agent will detect a
wall on the left and a wall on the right).

6.1.5 The Cheese Maze problem
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Figure 7: Representation of Cheese Maze example.

In this problem the agent is in the maze represented in Figure 7 and has available 4 different
actions corresponding to movements in the 4 compass directions. The purpose of the agent is to get
to the goal state, marked with a star (the cheese). In each state, there are 7 possible observations,
which depend on the immediate adjacent cells (for example, in state 5, the agent will observe a
cell on the west and a cell on the south).

As such, states 6, 7 and 8 all appear identical, and the same happens with states 9 and 10
or states 2 and 4. States 1, 3 and 5 are unique. Finally, there is one last observation (“Goal”),
corresponding to the agent being in the goal state, i.e., the agent is able to observe the state marked
with a star.
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6.1.6 The Guessing Game problem

In this very simple problem, the agent is faced with an opponent which has one of two cards: an
ace of clubs and an ace of diamonds (see Figure 8).
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Figure 8: Representation of the Guessing Game Example.

Since the agent is blindfolded, it is not possible for the agent to know which of the two cards
the opponent has. The right answer grants the agent with a +1 reward, and the wrong answer
costs him a penalty of −1.

The agent has 4 actions available: guess Clubs (Cl), guess Diamonds (Dm), Think (basically,
this action corresponds to doing nothing), and Peek. None of the actions Think or Peek costs or
rewards the agent with anything. However, if peeking, the agent will be able to observe the chosen
card.

Table 2: Transition Probabilities for Guessing Game example.
Guess Cl or Dm s′ = Cl s′ = Dm
s = Cl 0.5 0.5
s = Dm 0.5 0.5
Peek or Think s′ = Cl s′ = Dm
s = Cl 1.0 0.0
s = Dm 0.0 1.0

The transition probabilities for this problem can be found in Table 2 and the observation
probabilities are in Table 3. In both tables, s corresponds to the current state and s′ corresponds
to the state in the following instant.

Table 3: Transition Probabilities for Guessing Game example.
Guess Cl, Dm or Think x = Cl x = Dm x = None
s = Cl 0.0 0.0 1.0
s = Dm 0.0 0.0 1.0
Peek x = Cl x = Dm x = None
s = Cl 1.0 0.0 0.0
s = Dm 0.0 1.0 0.0

The reward for every correct guess is +1 and for every wrong guess is −1. Peeking and Thinking
cost 0. This problem, though trivial, will allow to illustrate a difference between the two algorithms,
Q-MDP and TEQ-MDP, since, in the optimal MDP policy, both actions “Think” and “Peek” have
the same value.

6.1.7 The 89-State Map problem

This problem was included to compare the performance of the algorithms Q-MDP and TEQ-MDP
for a system with a relatively large number of states.

In this problem, the agent moves around in an office-like environment as the one in Figure 9,
where the locations were discretized for the problem to have a finite number of states.
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Figure 9: Representation of the 89-State Map example.

At each time instant, the agent has a limited number of available actions, namely “Move For-
ward”, “Turn Left”, “Turn Right”, “Turn Back” and “Stand Still”. These actions, however, only
succeed sometimes. Figures 10 and 11 represent the transition probabilities for the several actions.
Figure 10 represents the transition probabilities of starting in the specified location and ending
in each of the depicted locations (for example, the probability of starting in the marked position
and finishing in the southern cell with the opposite orientation is 0.025). Evidently, if a certain
movement is not possible, the corresponding probability is added to the probability of the state
remaining unchanged.
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Figure 10: Transition probabilities for the “Forward” action.

The agent has 4 available sensors, allowing it to detect the presence of a wall in one of the four
directions: ahead, behind, on the left and on the right. These sensors provide one of two possible
observations: “wall” or “no wall”.

This leads to 16 possible observations, arising from the combinations of the 4 sensors possible
results (42 = 16). However, the 4 sensors are not completely reliable, since, in the presence of
a wall, the sensor will determine it correctly only with probability 0.9. Furthermore, when there
is no wall, the sensor will erroneously determine that there is a wall with probability 0.05. The
different observation probabilities are computed from the product of the observation probabilities
for each sensor, since they are considered independent.

The goal of the agent is the location marked with the symbol “F”. As such, it is admitted
that the agent is able to detect when it reaches the goal state. The “Goal” observation occurs with
probability 1 in the goal state and probability 0 in the remaining states.

The 16 possible sensor observations and the “Goal” observation makes a total of 17 possible
observations.
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Figure 11: Transition probabilities for actions “Turn Left”, “Turn Right” and “Turn Back”.

6.1.8 The Non-Linear Value Function problem

This problem was first introduced in [PR95] and the corresponding transition diagram can be found
in Figure 12.
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Figure 12: Representation of the Non-Linear Value Function example.

States labeled A are indistinguishable. The particularity in this example arises from the fact
that, although there is no specific action to collect information, action a in the states labeled A
allows the agent to disambiguate the state and proceed with the optimal decision.

6.2 Experimental Results
In Subsection 6.1 a few selected test-environments from the literature were briefly described. These
environments, herein named Shuttle, Tiger, Part Painting, 4× 4 Grid, Cheese Maze, 4× 3 Grid,
Guessing Game, 89-State Map and Non-Linear VF (Value Function), will allow a comparison on
the performance of the three algorithms (MDP, TEQ-MDP and Q-MDP), when applied to each of
these test-environments. The dimensions of the corresponding MDPs are listed in Table 4.

In Table 5, the computation time is presented, in seconds.
Clearly, the Q-MDP policy uses the MDP optimal solutions and, as such, takes the same
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Table 4: MDP Dimensions.
Environment |S| |X| |A|
Shuttle 8 5 3
Tiger 2 2 3
Part Painting 4 2 4
4× 4 Grid 16 2 4
Cheese Maze 11 7 4
4× 3 Grid 11 6 4
Guessing Game 2 3 4
89-State Map 89 17 5
Non-Linear VF 7 6 3

Table 5: Computational time for γ = 0.995. The computations to which these times refer were
performed off-line.

Environment MDP TEQ-MDP Q-MDP
Shuttle 0.484 s 0.719 s 0.484 s
Tiger 0.281 s 0.438 s 0.281 s
Part Painting 0.250 s 0.328 s 0.250 s
4× 4 Grid 0.735 s 0.922 s 0.735 s
Cheese Maze 0.516 s 0.890 s 0.516 s
4× 3 Grid 0.562 s 1.094 s 0.562 s
Guessing Game 0.172 s 0.312 s 0.172 s
89-State Map 7.110 s 20.390 s 7.110 s
Non-Linear VF 0.406 s 0.609 s 0.406 s

computation time. The TEQ-MDP is, in general, computationally heavier, since it determines the
intermediate rewards for the modified MDP, apart from the extra MDP solution. This leads to
an increase in the computational time of, approximately, a factor of two. It should however be
referred that the times in Table 5 refer to computations performed off-line.

In Table 6 we present the discounted cumulative reward (DCR) obtained by the different
algorithms in a 100 time-steps trial with the results averaged over 1000 Monte-Carlo runs. In the
experiments of Table 6, a value of 0.95 was used for the parameter γ. In Table 7 we present the
results for the same experiments with γ = 0.995. The bold-marked lines will be commented in
detail further ahead.

Table 6: DCR for γ = 0.95. The values correspond to the average of 1000 Monte-Carlo runs of
100 time instants.

Environment MDP TEQ-MDP Q-MDP
Shuttle 46.710± 6.708 46.773± 6.608 46.441± 6.399
Tiger 198.816± 0.0 20.878± 27.480 19.035± 30.577
Part Painting 13.026± 0.990 3.453± 1.813 3.423± 1.800
4× 4 Grid 3.815± 0.383 3.184± 0.314 3.192± 0.320
Cheese Maze 3.670± 0.389 3.249± 0.257 3.257± 0.261
4× 3 Grid 3.063± 0.726 2.085± 0.556 2.160± 0.574
Guessing Game 19.882± 0.0 9.686± 0.0 1.090± 3.069
89-State Map 8.669± 1.801 4.352± 3.776 0.184± 1.013
Non-Linear VF 13.239± 0.0 7.535± 0.0 6.687± 1.810

Several interesting aspects should be referred at this stage. First of all, in the first 6 environ-
ments, the TEQ-MDP has a behaviour which is similar to the Q-MDP. In fact, although some
slight variations may be observed, they are not significant and are due to the random aspects
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Table 7: DCR for γ = 0.995. The values correspond to the average of 1000 Monte-Carlo runs of
100 time instants.

Environment MDP TEQ-MDP Q-MDP
Shuttle 201.956± 19.197 201.609± 19.449 201.585± 19.508
Tiger 788.459± 0.0 85.713± 73.590 81.352± 81.002
Part Painting 50.996± 2.530 11.851± 2.726 13.407± 4.622
4× 4 Grid 17.769± 1.274 14.689± 1.044 14.595± 1.081
Cheese Maze 15.778± 1.115 14.381± 0.803 14.357± 0.807
4× 3 Grid 12.611± 2.108 9.678± 1.733 9.744± 1.850
Guessing Game 78.846± 0.0 39.324± 0.0 1.130± 7.809
89-State Map 62.832± 4.157 35.747± 28.853 0.884± 6.970
Non-Linear VF 52.158± 0.0 31.380± 0.0 26.134± 4.672

involved in the experiments.
In [Cas98, LCK95a], the performance of the Q-MDP algorithm has been proved to be near

optimal for these first six environments, which leads to the conclusion that, in such situations, the
TEQ-MDP is a suitable alternative.

Also the comparison of the results achieved by the policies obtained using the TEQ-MDP and
the Q-MDP algorithms with the results obtained by the optimal MDP policy shows that, in some
of the previous problems, partial observability does not pose serious difficulties in terms of control,
since the observations available to the agent allow him to follow a quasi-optimal policy. This
conclusion comes from the fact that both the Q-MDP and the TEQ-MDP present rewards which
are not too different from the reward obtained by the optimal MDP agent. This is clear in the
Shuttle problem, the Cheese Maze problem and in both Grid problems.

In the Shuttle and Maze problems this is easily understandable, since the observations allow
to disambiguate many of the states of the underlying MDP (see Section 6.1 for details on the
problems). On the other hand, in both Grid problems, although the observations are much less
informative, the optimal policies are very simple and easy to follow even in the absence of state
information.

On the other hand, by comparing the results obtained by the POMDP agents with the ones
obtained by the MDP agent in the Tiger and Part Painting examples, the difference in the rewards
is quite noticeable. However, this makes sense, since the POMDP policies use actions like “Listen”
in the Tiger example and “Inspect” in the Part Painting example, in order to disambiguate the state
of the system and choose the action in a more informed way. However, this delays the POMDP
agents and hence the differences in reward between the POMDP agents and the MDP agent.

In Figures 13, 14 and 15, the average policies of the different algorithms are presented.
The average policies depicted in Figures 13 and 14 confirm that, in fact, in the situations where

the POMDP methods present near-optimal performance (such as the Shuttle, Maze and both Grid
problems), the average policies of the POMDP agents follow closely the average MDP policy (see
Figure 13.a, 14.a, 14.b and 14.c).

Moreover, in the Tiger and Part Painting problems (see Figures 13.b and 13.c), the POMDP
policies present clear differences from the optimal MDP policy. This fact has already been ex-
plained, and such differences are justified by the use of the actions “Listen” and “Inspect” in the
POMDP setting and not in the MDP setting.

However, how can we explain the fact that, in these two situations, although actions such as
“Listen” and “Inspect” are of no use in the MDP setting, they are still used by the Q-MDP agent?

To understand this, notice that both the Painting and the Tiger problems present actions with
the specific purpose of disambiguating the state. Although for the MDP agent these actions are
not necessary, in these problems, the loss for the POMDP agents making a wrong decision is
somewhat larger than the gain for making a good decision. It is expected, then, that when facing
an ambiguous belief-state, both the TEQ-MDP and the Q-MDP will choose a more neutral action
(an action with 0-gain).

If in some other problem the right and the wrong actions lead to equal gain and loss, the Q-
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a) Shuttle example. b) Tiger example.
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c) Part Painting example.

Figure 13: Average Policies for three of the test-environments with γ = 0.95. The solid line
corresponds to the MDP optimal policy, dotted line corresponds to the TEQ-MDP optimal policy
and the dashed line represents the Q-MDP optimal policy.

MDP algorithm will choose between the two possibilities randomly, instead of choosing a neutral,
information-gathering action. This is extremely evident in the Guessing Game problem. In fact,
in Figure 15.a, one can observe that the Q-MDP agent chose action 1 every single time instant in
the run! This leads to an arbitrarily poor performance, as can be easily checked in Tables 6 and 7.

However, this is not the single situation where the Q-MDP fails. In the Non-Linear VF prob-
lem, although no action has the precise purpose of disambiguating the state (as happens in the
Tiger, Part Painting and Game examples), there is a choice of actions which allows the agent to
disambiguate its state.

By observing the average policy for the Q-MDP algorithm in Figure 15.c, it becomes evident
that, when facing observation A, the agent will choose action b, which will yield an expected reward
of 0 (+1 and −1 with probability 0.5 each). It will not choose to take action a which would allow it
to disambiguate the state. As a consequence, its reward will be, approximately, half of the reward
of the MDP agent (as can easily be checked in Tables 6 and 7). The TEQ-MDP agent, however,
chooses action a to disambiguate the state and, as such, is able to achieve a higher reward.

The 89-State Map problem is aimed at testing the performance of the algorithms in a larger
state-space POMDP. Since, in this problem, the purpose of the agent is reaching the goal, a different
measurement of performance will be used, that accounts for the number of runs in which the agent
was able to reach the goal. These results will provide, in this particular case, a more intuitive
understanding of the performance of the algorithms. The percentage of success (goal-achievement)
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a) 4× 4 Grid example. b) Cheese Maze example.
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c) 4× 3 Grid example.

Figure 14: Average Policies for three other test-environments with γ = 0.95. The solid line
corresponds to the MDP optimal policy, dotted line corresponds to the TEQ-MDP optimal policy
and the dashed line represents the Q-MDP optimal policy.

in this problem are summarized in table 8.

Table 8: Goal achievement percentage for the 89-State Map.
Method γ = 0.95 γ = 0.995

MDP 100% 100%
TEQ-MDP 63.7% 61.4%
Q-MDP 3.9% 1.6%

By looking at Table 8, the superiority of the TEQ-MDP algorithm is overwhelming. In fact, in
this problem there is a large number of states which will generally yield similar observations. This
will often lead to a situation where the agent will be completelly lost. The Q-MDP agent won’t be
able to choose an action in order to progress in the maze and, as such, will choose to do nothing.
This becomes evident in Figure 15.b, where the Q-MDP agent will quickly be “stuck” repeating
action “do nothing” (action 5) in the lack of anything better to do.

The results show that such problem doesn’t occur with the TEQ-MDP agent, which clearly
outperforms the Q-MDP agent.

One last remark should be made regarding the behaviour of the TEQ-MDP agent. Notice that
the MDP agent chooses, mainly, the “Move Forward” action (action 1). The TEQ-MDP agent, in



Institute for Systems and Robotics, Technical Report RT-601-05, February 2005 25

40 42 44 46 48 50 52 54 56 58 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Mean Policy for file Game

Time (sec)

A
ct

io
n

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Mean Policy for file Map89

Time (sec)

A
ct

io
n

a) Guessing Game example. b) 89-State Map example.
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c) Non-Linear VF example.

Figure 15: Average Policies for the last three test-environments with γ = 0.95. The solid line
corresponds to the MDP optimal policy, dotted line corresponds to the TEQ-MDP optimal policy
and the dashed line represents the Q-MDP optimal policy.

order to be able to disambiguate its current state, chooses mainly “Turn” actions (actions 2, 3 and
4), which allow it to determine, more accuratelly, its current state. This could be interpreted as
the TEQ-MDP agent being “looking around”.

7 Conclusions and Future Work
In this report we described a new POMDP algorithm, named as Transition Entropy Q-MDP (TEQ-
MDP). This algorithm computes the optimal policy of a modified MDP and uses the obtained
optimal solution to compute the action for the POMDP, as a function of the belief-state. This
modified MDP incorporates state entropy information in its reward structure, making use of the
concept of transition entropy, also introduced in this report.

Although the modified MDP has a larger state-space, which requires additional effort to the
computation of the policies, it still proves to be suitable for real-time implementation, since the
main computational burden (arising from the computation of the optimal MDP solution) can be
done off-line.

The algorithm was tested in several examples from the literature and its performance com-
pared with the original Q-MDP algorithm. In situations where the Q-MDP algorithm is known
to presente near-optimal performance, the performance of the TEQ-MDP was not worse. Further-
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more, TEQ-MDP proved to find the optimal solution in particular situations where the Q-MDP
algorithm clearly failed (such as the Guessing Game, the 89-State Map and the Non-Linear Value
Function problems).

Future work includes the clarification of the relation between the optimal POMDP solution
and the solution determined by the TEQ-MDP. Adittionally, there is the need for some effort in
order to test the TEQ-MDP algorithm in even larger problems, to understand its exact range of
applicability and perceive if it actually constitutes a universal alternative to the computationally
untractable exact solution methods.
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A Q-MDP and Optimistic Guessing Equivalence
In this appendix, we present the proof of Proposition 5.1 presented in Section 5.3 which, because
of its length, was left aside for the sake of clarity.

Proposition (5.1). Consider a POMDP (S, A,X, T,R,M) and let V ∗(s) be the optimal value-
function for the underlying MDP given by (S, A, T,R). Then, the Q-MDP policy and the Optimistic
Guessing policy correspond to the same policy, i.e.,

arg max
a∈A

∑
s

π(s)R(s, a) + γ
∑
s,s′

π(s)T (s, a, s′)V ∗(s′)

 =

= arg max
a∈A

∑
s

πT (s)R(s, a) + γ
∑

s,s′,x

πT (s)T (s, a, s′)M(x, s′, a)V (πT+1)

 , (33)

where V (πT+1) =
∑

s πT+1(s)V ∗(s).
Furthermore, supposing that the agent would follow the optimal MDP policy for all time instants

t > T , the expected value of the belief state π at time T is
∑

s πT (s)V ∗(s).

Proof : As seen from Section 5, an Optimistic Guessing agent would choose action a∗ so as to
maximize ∑

s∈S

πt(s)R(s, a) + γ
∑

s,s′,x

πt(s)T (s, a, s′)M(x, s′, a)V (πt+1), (34)

as seen from (20). On the other hand, an agent following a Q-MDP policy would choose an action
a∗ so as to maximize ∑

s∈S

πt(s)R(s, a) + γ
∑
s,s′

πt(s)T (s, a, s′)V ∗(s′), (35)

where V ∗(s′) is the optimal MDP value function, as seen from (21).
Recall that, in (34), V is defined as V (πt+1) =

∑′
s πt+1(s)V ∗(s) which, replaced in (34) yields∑

s∈S

πt(s)R(s, a) + γ
∑

s,s′,s′′,x

πt(s)T (s, a, s′)M(x, s′, a)πt+1(s′′)V ∗(s′′). (36)

In Section 4, the belief state update equation was introduced in (15), which is repeated in (37).

πt+1(s′)|a,x =
M(x, s′, a)

∑
s πt(s)T (s, a, s′)∑

s,s′′ πt(s)T (s, a, s′′)M(x, s′′, a)
. (37)

By replacing (37) in (36), we finally obtainX
s∈S

πt(s)R(s, a) + γ
X

s,s′,s2,x

πt(s)T (s, a, s′)M(x, s′, a)πt+1(s2)V ∗(s2) =

=
X
s∈S

πt(s)R(s, a) +

+γ

P
s,s′,x πt(s)T (s, a, s′)M(x, s′, a)P

s1,s2
πt(s1)T (s1, a, s2)M(x, s2, a)

X
s1,s2

πt(s1)T (s1, a, s2)M(x, s2, a)V ∗(s2) =

=
X
s∈S

πt(s)R(s, a) + γ
X

s1,s2,x

πt(s1)T (s1, a, s2)M(x, s2, a)V ∗(s2) =

=
X
s∈S

πt(s)R(s, a) + γ
X

s1,s2

πt(s1)T (s1, a, s2)V ∗(s2),

which demonstrates that Q-MDP and Optimistic Guessing maximize the same action and, as
such, are equivalent. Furthermore, if the action that maximizes (34) (and (35)) happens to be the
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optimal MDP action, ∑
s∈S

πt(s)R(s, a) + γ
∑
s,s′

πt(s)T (s, a, s′)V ∗(s′) =

=
∑
s∈S

πt(s)

{
R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)

}
=

=
∑
s∈S

πt(s)V ∗(s). (38)

�


