
MODEN: Multi-Robot, Obstacle-Driven Elastic Network Path Planning

Francisco S. Melo
Institute for Systems and Robotics,

Instituto Superior Técnico
Lisboa, Portugal

fmelo@isr.ist.utl.pt

Manuela M. Veloso
School of Computer Science
Carnegie Mellon University,

Pittsburgh, PA, USA
veloso@cs.cmu.edu

Abstract— We propose an efficient and elegant heuristic al-
gorithm for path planning that makes use of an elastic network.
The network initializes as a simple straight path between the
initial and goal positions. It then randomly samples the space
around the areas of this initial path that lie inside obstacles,
“pushing” the network away from the obstacles and thus
determining an obstacle-free path. The fundamental algorithm,
dubbed as ODEN (Obstacle-Driven Elastic Network), is an
improved extension of the path-planning algorithm proposed
in [1]. We also propose a multi-robot variation of ODEN, that
we have named MODEN (Multi-robot ODEN). We illustrate the
application of both algorithms in numerous test environments
and discuss its applicability to general path-planning problems.

I. INTRODUCTION

Given an environment representation, path planning con-
sists of determining the “best” trajectory through the envi-
ronment linking some initial point to some goal point. The
problem of determining such best trajectory is known to be
complex to solve, in that general complete algorithms1 are
argued to be computationally too expensive to be of any
practical use [2].

As such, many heuristic approaches have been proposed
in the literature that aim at optimizing some particular
feature of the yielded path or of the path-planning process.
For example, a path can be sought to achieve maximum
smoothness, using a cost function based on the curvature
of the path and its derivative [3]. In that case, the path can
be represented as a set of postures between which minimum
curvature paths are described. Another example may consider
the problem of navigating a vehicle from an initial point to
a final point with constant velocity [4].

However, most approaches simply aim at establishing a
minimal-length, collision-free path from the initial point to
the goal point, while making the determination of such path
computationally effective.

In many heuristic methods, the use of random
search/sampling in configuration space is a commonly used
strategy, providing a computationally effective technique
of free-space “exploration”. For example, rapidly-exploring
random trees (RRT) build a tree in the free space by
probabilistically balancing the search towards the goal with
the exploration of random directions, chosen according to
the dynamics of the vehicle [5]. This approach may be

1An algorithm is complete if it finds at least one solution whenever there
is one.

further enhanced to cope with replanning problems by also
considering past plans in the construction of the tree [6].

RRTs can be included in the broader class of the pre-
viously introduced probabilistic path planning algorithms
known as randomized road-maps [7]. These algorithms ran-
domly sample the configuration space and determine a “road-
map” uniting the different sampled points so as to build a
path from the initial point to the final point. This road-map
is, basically, a connectivity graph linking the various sample
points.

Randomized potential fields [8]–[10] is another class of
probabilistic path planning algorithms, which define a poten-
tial function on configuration space. Similar to randomized
road-maps, a path then links local minima from the initial
point to the final point. A rather general analysis of random-
ized methods, namely potential-fields and road-maps, can be
found in [2].

There are also several methods relying on quad-tree divi-
sions of the environment, to which search algorithms are then
applied, such as the A∗ or D∗ (see [11]–[13] for details).
Finally, we refer to the book by Choset et al. [14] and
references therein for a broad treatment or robotic motion
planning.

In this paper we present a new algorithm, ODEN, that
extends the approach presented in [1]. This method repre-
sents a path as an elastic network initialized as a straight-
line between the initial and the target points. The different
nodes in the network are then “attracted” towards free-space
and “repelled” from the obstacles, yielding a collision-free
trajectory.

This method has several interesting properties that make it
worth of consideration. First of all, as will become apparent
along the paper, the method only needs a function which is
able to determine whether a point lies in free-space or inside
an obstacle. It does not require a complete representation
of the environment, since sampling a point in configuration
space to determine whether it lies in the free-space can
generally be done using sensorial information, require no
representation of the complete environment.

Another interesting feature is the fact that the path is repre-
sented as an elastic network of units. Even if in this paper we
consider path-planning problems for mobile robots, the fact
is that other interesting problems can be addressed with this
algorithm. As an example, consider that a communication
channel is to be established between two distant locations A



?

?

Location A

Location B

Communication units

Fig. 1. Communication channel problem.

and B by placing several communication units between A
and B (see Fig. 1). Each communication unit will relay the
messages from one location to the other by receiving/sending
the message packets to the neighboring units. The considered
path-planning algorithm is a local method that updates the
position of each unit separately by sampling the space around
that unit and thus provides a method that allows each unit
to individually and gradually adjust its position so that the
final network is obstacle-free.

In this paper, we propose a modification of the basic
algorithm in [1]. This new algorithm, which we call ODEN
for obstacle-driven elastic network, retains all the desirable
properties of the original method while actually improving
its computational efficiency and overall performance. In par-
ticular, our method provides less “tortuous” paths and greatly
decreases the number of necessary iterations for convergence.
We then introduce MODEN, a multi-agent extension of
ODEN that determines non-intersecting, collision-free paths
for multiple robots navigating in a common environment.

II. PATH PLANNING USING AN ELASTIC
NETWORK

The algorithm described in [1] makes use of an elastic
network of “processing units” (PU) linking the initial point in
configuration space with the target point. The elastic network
is initialized as a straight line between the initial and final
points. We denote by U t the set of all units in the network
at iteration t. The algorithm proceeds at each iteration t by
choosing a random unit wi ∈ U t and also randomly sampling
a point in a region of radius r around wi. Once a sample x
is obtained, the algorithm updates the position of the nearest
node in the network (the best matching unit, BMU) according
to the following heuristic:

• If the sample point is in free space, it “attracts” the
BMU towards it (Figure 2.a);

• If the sample point is in the occupied space, it “repels”
the BMU away from it;

• If both the sample point and the BMU lie in occupied
space, the BMU will move randomly, orthogonally to
the line segment whose extreme points are BMU’s
neighboring units (Figure 2.b).

Once the BMU is updated, its immediate neighbors are
updated accordingly.

Obstacle

Sample point

wi

wi+1

wi−1

Sample point

wi+1

wi−1
wi

Obstacle

a) b)
Fig. 2. Several updates of the closest PU, depending on the position of the
sample point.

As stated, the points sampled from configuration space
used in the updates are randomly obtained by sampling
around each of the nodes in the network in a region with
radius r. This radius is decreased, as the algorithm proceeds,
from an initial value of rI down to a final minimum value
of rF . This “two-scale” sampling can easily be justified.
The algorithm starts by “pulling the network” towards large
regions of free space and then, locally, adjusts the network
to the “details” of the environment.

Finally, every λ time instants, where λ is a fixed parameter,
a new unit is added in between the two most distant units in
the network until a maximum number of units is reached.

The term elastic network arises from the fact that each unit
exerts some conservative tension on its neighboring units so
as to maintain their relative positions. In other words, the
updated PU is “pulled” by its neighbors and also “pulls”
its neighboring units. More details on the algorithm can be
found in the referred work [1].

The method has several important advantages. First of
all, it is extremely simple to implement. It only requires a
sampling mechanism around the network and the evaluation
of the attraction function. This attraction function basically
determines whether a point is in free-space or in occupied
space. The update of each unit then resumes to a few
extremely simple operations.

Secondly, it is an extremely efficient algorithm, being in
fact able to find collision-free paths between the desired
points with very little computational effort. The examples
reported in [1] were able to determine collision-free paths
in several environments in few thousand iterations. Fur-
thermore, it does not requires a complete model of the
environment but just a sampling function able to determine
whether a point lies in free-space or not.

Finally, the method is local in that each unit is updated
considering only its immediate neighborhood. This is a very
interesting feature of the algorithm: even if each unit is an
independent entity that must adjust its individual position
communicating only with its neighboring units and sampling
the surrounding space, the method provides a way of deter-
mining a global obstacle-free trajectory/network.

However, it also presents several inconveniences. First of
all, the algorithm will often spend a lot of iterations updating
units that need not be updated. This happens, for example,
in an obstacle-free environment or any environment where
there is a lot of free space, where most of the units will
already start away from any obstacle.

Furthermore, because sample points in free-space keep
attracting the network to free-space, this may lead to bizarre
trajectories such as the ones depicted in Figure 3.



a) No obstacles; b) 25 obstacles.
Fig. 3. Trajectories obtained by the original algorithm.

Finally, the algorithm was designed to run for a fixed
number of iterations, usually large, and takes generally this
number of iterations to terminate before a path is produced.
In the next section we propose a modification of the algo-
rithm which, while maintaining the simplicity of the original
algorithm and its functional principle, alleviates the reported
inconveniences.

III. THE ODEN ALGORITHM

In this section we describe two fundamental changes to the
algorithm in the previous section: a new update mechanism
for the units and an additional condition to introduce new
units in the network. These modifications yield the ODEN2

algorithm and readily overcome the inconveniences pointed
out to the method from [1]. We also present the results
obtained with ODEN that show the introduced modifications
to actually improve the overall efficiency and performance
over the original algorithm.

A. The update mechanism

Recall that the two main inconveniences reported in the
previous section are the many iterations spent updating units
that need not be updated and the fact that the whole network
is attracted towards free-space, this leading to undesirable
trajectories.

It should be clear that the undesirable behavior featured is
mainly due to continuous updating of units that are already in
free space. To overcome such phenomenon we introduce a
simple modification to the algorithm: we partition the set
U t into two sets, U t

U and U t
F . The set U t

U contains the
“updatable” units and the set U t

F contains the “fixed” units.
In a first approach, we consider the set U t

F as the subset of
U t lying in free-space. Therefore, we update only the units
that lie inside objects.

There is however a purpose in continuously updating the
different PUs even when they are in free space. Consider the
situation depicted in Figure 4. In the original algorithm, the

Obstacle

Fig. 4. Situation where further updating is desirable.

2Obstacle-Driven Elastic Network.

two units depicted would be continuously updated, pulling
their common edge out of the obstacle. If we consider the
set U t

F as containing all units in free space, none of the
two units depicted will be further updated and the path thus
obtained will not be collision-free, even though all units
may eventually lie in free space. To overcome this situation,
we consider a second class of updatable units: those whose
contiguous edges intersect any of the obstacles. In Figure 5
we illustrate the two classes of updatable units.

Obstacle

Edge
intersects

object

Unit inside
object

Obstacle

Fig. 5. Two different classes of updatable units.

One final remark to refer that, in order to determine if a
given edge intersects any object, we sample several random
points along the edge and test whether they lie in free space.
The number of points depends on the actual length of the
edge. This method generally produces quite reliable results
even without sampling too many points.

B. The introduction of new units
Recall that in the original algorithm a new unit is added

to the network every λ iterations up to a maximum pre-
determined number of units. The addition of such extra
units, as well as a decrease in the sampling radius around
the network, allows the network to converge to smoother
trajectories and forces the updates to consider increasingly
local data around each unit (see [1] for complete details).

Considering the modified version of the algorithm de-
scribed insofar, it is possible and indeed likely that all units
reach free-space before λ iterations have occurred. This
implies that the algorithm will “stall” until a new unit is
introduced. As such, we include an additional condition in
the algorithm, and a new unit is added to the network if any
of two conditions is verified:

• Whenever λ iterations have occurred; or
• Whenever U t

U is empty.
If the algorithm introduces a new unit in the network

before λ iterations have occurred, the sampling radius is,
nevertheless, decreased accordingly.3

We remark that the introduction of new units also allevi-
ates the problem described in Figure 4. In fact, in many
situations such as the one in Figure 4, a new point will
actually be added between the two points in Figure 4, leading
to a solution like the one on Figure 6.

C. The ODEN algorithm
We refer to the modified version of the algorithm as

ODEN, standing for obstacle-driven elastic network. Table I
presents the pseudo-code for the ODEN algorithm.

3This is implemented by keeping a counter on the number of iterations
occurred since the last insertion. Whenever all units reach free-space, the
counter skips to the next insertion step. Since the radius used to sample
depends on this counter, it is decreased accordingly.



Obstacle

New point

Fig. 6. The extra point solves the problem.

F is the attraction function given by

F (x) =

{
1 if x ∈ Xfree;
−1 if x ∈ Xobs,

where x is a point in configuration space, Xfree is the
free space and Xobs is the space occupied by the obstacles.
Clearly, if X is the complete configuration space, X =
Xfree ∪Xobs.

The parameters tmax, λ, β, η0 and η1 are common to the
algorithm in [1]. The first two parameters represent, respec-
tively, the maximum number of iterations for the algorithm
and the number of iterations between two insertions of a new
point. The last three parameters basically define the “update
rates” and “elastic coefficient” used in the updates of the
various components of the algorithm. The input parameters
xI and xF represent the initial and final point of the path
and N0 and Nmax represent the initial and final number of
nodes in the network.

D. Experimental results from the ODEN algorithm

We now present the results from several tests, obtained
with the ODEN algorithm. In all results displayed, the
algorithm was run with the same parameters as those reported
in [1].4

Figures 7.a and 7.b present the results obtained in the same
environments as those in Figure 3. Notice that ODEN is able
to overcome the inconveniences of the original algorithm
reported in the previous section.

a) No obstacles; b) 25 obstacles.
Fig. 7. Trajectories obtained with the modified algorithm in the environments
of Figure 3.

Figures 8 and 9 present the results obtained in two sets of
environments with 20 and 40 random obstacles, respectively.
Notice that even if the algorithm does not take into account
the minimization of the length of the path, the obtained paths
often exhibit small perturbations from the initial straight
path.

4In particular, we use N0 = 10, Nmax = 100, β = 0.0025, η0 = 0.05,
η1 = 0.01, rI = 2, rF = 0.7 and tmax = 40000.

TABLE I
THE ODEN ALGORITHM.

ODEN(xI , xF , N0, Nmax, rI , rF )

1) Initialize the network as:

w0 = xI ;

wi = xI + i ·
xF − xI

N0 − 1
, i = 1, . . . , N0 − 1.

2) Let t = 1, Lins = 0, N = N0;
3) Determine Ut

U;
4) If Ut

U = ∅, let t = Lins + λ and proceed to
11;

5) Randomly choose wi ∈ Ut
U;

6) Let

r = rI ·
(

rF

rI

)t/tmax

; (1)

7) Randomly choose a point x ∈ X such that
‖x− wi‖ < r

8) Find wj = arg minw∈Ut
U
‖x− w‖;

9) If F (x) > 0,

wj = wj + η0(x− wj) + β(wj−1 + wj+1 − 2wj)

else

wj = wj + α
(wj+1 + wj−1)⊥

‖wj+1 + wj−1‖
,

where α is a randomly chosen number such
that −β ≤ α ≤ β.

10) If F (x) > 0,

wj±1 = wj±1 + η1(x− wj±1).

11) If t− Lins ≥ λ,

a) Let Lins = t and insert a new unit
wnew such that

wnew =
wk + wk+1

2
,

where wk and wk+1 are such that

‖wk − wk+1‖ = max
wi∈Ut

U

‖wi − wi+1‖.

b) Let N = N + 1 and update Ut
U.

12) If
(
t < tmax ∧ (I 6= ∅ ∨N < Nmax)

)
, let t = t + 1

and return to 5, else finish;

a) b)
Fig. 8. Trajectories obtained with ODEN in environments with 20 random
obstacles.

To observe the behavior of the algorithm in environments
with little free space, we tested the ODEN algorithm in envi-
ronments with 60, 80 and 100 random obstacles. Figures 10
and 11 depict the obtained results.

We remark that, as argued in the previous section, the
intersection effect depicted in Figure 4 is not observed in
the trajectories, even if in many situations the path is close



a) b)
Fig. 9. Trajectories obtained with ODEN in two environments with 40
obstacles.

a) b)
Fig. 10. Trajectories obtained with ODEN in two environments with 60
obstacles.

a) 80 obstacles; b) 100 obstacles.
Fig. 11. Trajectories obtained with ODEN in two environments with 80 and
100 obstacles.

to these.
Finally, we present in Figure 12 the results obtained in two

environments with non-random obstacles. The distributions
of the obstacles in these environments can be seen as
possible worst-case situations for the algorithm. Notice that
the algorithm is, in fact, able to deliver the expected collision-
free paths.

a) b)

Fig. 12. Trajectory obtained with ODEN in environments with non-random
obstacles.

In Table III we have reported, for each example, the
number of iterations required to reach the final path. We
note that the iterations reported in the empty environment
arise from the introduction of the additional units necessary
to complete the Nmax units.

Some remarks are in order. First of all, in the first set

of environments, the algorithm is generally able to deliver
a solution within few iterations. This is in clear contrast
with the original method. Just as a term of comparison,
the original algorithm took 2981 and 13954 iterations to
produce the two paths depicted in Figure 3. On the other
hand, ODEN will generally perform better on more sparse
environments than in environments with little free space. This
is easily explained if we consider that the algorithm proceeds
by sampling the space around the network and pulling the
network towards free-space and away from the obstacles. If
few sample points lie in free space, more iterations will be
required for the algorithm to find a proper path.

On the other hand, “thin” obstacles may be hard to
sample and, therefore, to avoid. We produced one further
experiment to test the performance of the algorithm when a
single thin, long obstacle is found in the environment. The
result is produced in Fig. 13. Notice that, even though the
environment has a single obstacle and is, in general, a sparse
environment, the algorithm took a considerable number of
iterations before a solution was found.

Fig. 13. Trajectory obtained with ODEN in an environment with a thin
obstacle.

IV. MODEN: ODEN IN MULTI-ROBOT DOMAINS

We now assume that a set of n robots needs to navigate in a
common environment. Given the initial and final positions in
configuration space for each of the n robots in the set, we are
interested in determining an individual path for each robot,
so that the paths are non-intersecting. Intersecting paths may
not be a problem, when the dynamics or communication
capabilities of the robots allow for collision prevention. For
example, it is possible to provide the robots with some
signaling mechanism or protocol forcing one of the robots
in the intersection to wait for the other.

We focus on the generation of non-intersecting paths
with no need for any knowledge of the robot dynam-
ics/communication capabilities. The paths generated by the
algorithm can be immediately used by the robot set, without
considering any coordination or synchronization mechanism
to prevent on-path collisions. Non-intersecting paths may
also be desirable by considering once again the problem
of the communication channel. If multiple channels are to
be set in a common environment, intersecting paths may be
undesirable to minimize any interference.

Given the initial and final points in configuration space
for each of the n robots, we can apply the ODEN algorithm
to each robot individually, yielding n distinct paths, one
for each robot. However, these paths will not take into



consideration the existence of the other robots which will
probably lead to intersecting paths. The added functionality
of MODEN arises from two main ideas: considering the
path of other robots as an obstacle and defining an ordering
relation to determine the paths for the different robots.
A. Other robots’ paths as obstacles

Consider the situation where 2 robots must navigate in a
common environment, as depicted in Figure 14. Let R1 be

A B

D

C

Fig. 14. Situation with 2 robots in a common environment.

the robot traveling from A to B and R2 be the robot traveling
from C to D. If the the trajectory of R1 is to be avoided when
determining the path of R2, a simple idea it to consider
each PU in the path of R1 as the center of some obstacle
(see Figure 14). The size of the obstacle can be adjusted as
a parameter. This strategy turns the other robot’s path into
an “obstacle” and we would expect the ODEN algorithm
to produce individual trajectories that do not intersect, if
possible.

However, this is not exactly so. If ODEN updates all
trajectories simultaneously, this will lead to intersecting
paths. In fact, consider the situation depicted in Figure 15.a.
If the samples used to update each path continue to be

Sample point

Sample point

a) b)
Fig. 15. Situations that may lead to intersection.

sampled in opposite sides of the other path, the final paths
will unavoidably intersect. Furthermore, situations may occur
in which the paths keep “chasing” each other, as they keep
sampling free points in one direction while trying to avoid
the other path (see Figure 15.b).

To minimize such phenomenon, we introduce an ordering
in the set of the robots and run the ODEN algorithm
following that order.

B. Ordering of the robot set

Suppose that a strict ordering among the set of robots
is given.5 According to this ordering, it is possible to refer

5It could be possible to choose this order to optimize some given criteria.
In our experiments, either we are given the order or are able to determine
it based on the geometry of the initial and final positions of the robots.

to each of the robots in the set as R1, . . . , Rn, where Ri

stands for the ith robot in the given ordering. We now
successively apply the ODEN algorithm to each of the robots
R1, . . . , Rn individually: we determine the path for robot R1

using the ODEN algorithm and considering only the original
obstacles in the environment. Then, for each other robot Ri,
i = 2, . . . , n, we determine its path using the same ODEN
algorithm, but considering as obstacles the trajectories of
robots R1, . . . , Ri−1 besides the natural obstacles in the
environment.

Finally, to alleviate the intersections arising from cross
sampling (see Figure 16), we include a small adaptive bias
in the random sampling process.

Sample point

Sample point

Fig. 16. Intersection will also occur if the depicted sample points are used
for update.

C. The MODEN algorithm

Table II presents the MODEN algorithm in pseudo-code.
We denote by {x1

I , . . . , x
n
I } and {x1

F , . . . , xn
F } the sets of

TABLE II
THE MODEN ALGORITHM.

MODEN({x1
I , . . . , xn

I }, {x
1
F , . . . , xn

F }, N0, Nmax, rI , rF )

1) Initialize Xobs with the obstacles from
the environment;

2) for i = 1, . . . , n do
3) Pi = ODEN(xi

I , xi
F , N0, Nmax, rI , rF );

4) Append Pi to Xobs as in Figure 14 (the
extreme units in the network are not
considered);

5) end for

initial and final points for the n robots. Pi is the path
generated for robot Ri.

Recall that ODEN uses points randomly sampled from the
configuration space to update the units in the network. These
points are sampled in a region of radius r around a randomly
chosen unit wi, where r is given by (1). A sample point x
is then given by

x = wi + rx∠θx,

where rx is a random number between 0 and r, θx is a
random angle between 0 and 2π and wi is the chosen unit.

Let I1, . . . , Ik be a uniform partition of the interval I =
[0, 2π]. A uniform sampling procedure chooses an angle θx

in Ii with probability pi = 1/k. Suppose that the chosen
angle at some iteration was αx and the corresponding point



x belongs to Xfree. Then, the probabilities pi are biased
towards the direction αx according to

pi =

{
pi + ε(1− pi) if αx ∈ Ii;
(1− ε)pi otherwise

and then normalized to yield
∑

i pi = 1.

D. Results using the multi-agent algorithm

We now present several tests conducted with the multi-
robot path planning algorithm in various environments.

Figures 17.a and 17.b present the paths obtained in envi-
ronments with 15 random obstacles, where the robots depart
from different initial positions but arrive to a common final
position. Figures 18.a and 18.b present similar results this

a) b)
Fig. 17. Trajectories obtained for 2 robots in an environment with 15
obstacles.

time obtained in environments with 30 random obstacles.

a) b)
Fig. 18. Trajectories obtained for 2 robots in an environment with 30
obstacles.

We then applied the algorithm to the extreme situation
where the robots depart and arrive at a common location.
Notice that this implies that the paths for both robots are
coincident in the initial iteration. Figures 19.a and 19.b depict
the results obtained in environments with, respectively, 15
and 30 obstacles.

a) 15 obstacles; b) 30 obstacles; obstacles.
Fig. 19. Trajectories obtained for 2 robots with initial coincident trajectory.

Figures 20.a and 20.b depict the results obtained in the
5-obstacle environment of Figure 12.a, for two different sets
of initial conditions. We also tested the performance of the

a) b)
Fig. 20. Trajectories obtained for 2 robots in an environment with non-
random obstacles.

algorithm with 3 and 5 robots. Figures 21 and 22 present the
obtained results in two different environments.

Fig. 21. Trajectories obtained for 3 robots in a random environment.

a) b)
Fig. 22. Trajectories obtained for 5 robots in two environments with 10
random obstacles.

As in Section III, the algorithm was run with the same
parameters as those reported in [1]. The dimension of the
“virtual obstacles” around each PU is 1

3 of the size of the
actual random obstacles. For each example, the number of
iterations to reach the final result is presented in Table III.

V. DISCUSSION

In this paper we have described ODEN, a path-planning
algorithm relying on an elastic network and point-based
sampling to achieve a collision-free trajectory between two
points. The point-samples are used to “pull” the nodes of
the network toward free space, and the algorithm is able to
achieve a satisfactory trajectory in few iterations.

The main advantages of the ODEN algorithm lie on the
simple, intuitive principle in which it relies and its simplicity
of implementation. Each unit in the network is locally driven
away from the obstacles in the environment. ODEN provides



TABLE III
NUMBER OF ITERATIONS FOR THE DIFFERENT EXAMPLES.

Example Iterations Example Iterations

Fig. 7.a 92 Fig. 17.a 168
Fig. 7.b 105 Fig. 17.b 425
Fig. 8.a 215 Fig. 18.a 470
Fig. 8.b 264 Fig. 18.b 652
Fig. 9.a 291 Fig. 19.a 249
Fig. 9.b 155 Fig. 19.b 920
Fig. 10.a 1285 Fig. 20.a 1609
Fig. 10.b 1590 Fig. 20.b 1073
Fig. 11.a 3608 Fig. 21.a 517
Fig. 11.b 3792 Fig. 22.a 1259
Fig. 12.a 1891 Fig. 22.b 928
Fig. 12.b 2004
Fig. 13 721

simple solutions with no a priori knowledge of the geometry
of the environment, unlike other path planning algorithms.

From the obtained results, we claim ODEN to be an
efficient algorithm, being able to provide collision-free paths
even in environments with a large percentage of occupied
area. In a practical application, ODEN would simply require
a sampling function to evaluate whether a point in config-
uration space is in free-space or inside an obstacle. This
information can easily be retrieved from sensorial data and
makes this method simple to implement.

However, and as argued in Section II, the sampling
mechanism supporting ODEN implies that the algorithm is
less effective in environments with little free-space or with
very thin obstacles. In the former case, it will be hard to
sample points in free-space to pull the network away from
the obstacles. In the latter case, it will be hard to sample the
obstacles so as to drive the network away from them.

MODEN extends the simple principle behind ODEN to
multi-agent scenarios, while remaining a local method driven
by obstacles. We have considered multi-robot path-planning
problems in which the main goal is to avoid path intersection.
This is not such a usual approach, as more elaborate ways
exist to coordinate multiple robots wandering in a common
environment (see, for example, the approaches in [15]–[17]).
However, this approach adequately verifies the applicability
of ODEN to more complex problems. The aforementioned
approach suitably illustrates the simplicity and local behavior
of MODEN and provides a better grasp on the effectiveness
of ODEN’s underlying working principle. Nevertheless, and
in spite of the encouraging results, we should remark that if
the initial straight-line path of the several robots intersects,
it is generally not possible to ensure a non-intersecting
solution. It may also happen that the path for the initial robot
renders the task of finding a collision-free infeasible.

In the final version of the paper, we will compare the
performance of ODEN and MODEN with that of other
path-planning methods. This comparison with other well-
established path-planning methods will allow us to further

understand the applicability of these algorithms.
It would also be of interest to explore the use of richer

attraction functions F . If the attraction function F is more
than an “obstacle-indicator”, the algorithm may use the extra
information to drive the updates in a more informed fashion
and thus improve its performance.

ACKNOWLEDGEMENTS

This work was partially supported by the POS_C financ-
ing program, that includes FEDER funds. The first author
acknowledges the PhD grant SFRH/BD/3074/2000. Manuela
Veloso is currently in sabbatical leave at Radcliffe Institute
for Advance Study (Harvard University) as a Sargent-Faull
Fellow.

REFERENCES

[1] J. Moreno and M. Castro, “Heuristic Algorithm for Robot Path
Planning Based on a Growing Elastic Net,” in Proc. 12th Portuguese
Conf. Artificial Intelligence, EPIA 2005, 2005, pp. 447–454.

[2] J. Barraquand, L. Kavraki, J. C. Latombe, T. Li, R. Motwani, and
P. Raghavan, “A Random Sampling Scheme for Path Planning,” Int.
J. Robotics Research, vol. 16, no. 6, pp. 759–774, 1997.

[3] Y. Kanayama and B. Hartman, Smooth Local Path Planning for
Autonomous Vehicles, 1990, pp. 62–67.

[4] G. Walsh, R. Montgomery, and S. Sastry, “Optimal Path Planning
on Matrix Lie Groups,” in Proc. 33rd IEEE Conf. on Decision and
Control, vol. 2, 1994, pp. 1258–1263.

[5] S. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” Computer Science Department, Iowa State University, Tech.
Rep. TR 98-11, 1998.

[6] J. Bruce and M. Veloso, “Real-Time Randomized Path Planning for
Robot Navigation,” in Proc. 2002 IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, 2002, pp. 2383–2388.

[7] L. Kavraki, M. Kolountzakis, and J. C. Latombe, “Analysis of Proba-
bilistic Roadmaps for Path Planning,” in Proc. 1996 IEEE Int. Conf.
Robotics and Automation (ICRA’96), 1996, pp. 3020–3025.

[8] J. Barraquand and J. C. Latombe, “A Monte-Carlo Algorithm for Path
Planning With Many Degrees of Freedom,” in Proc. 1990 IEEE Int.
Conf. Robotics and Automation, 1990, pp. 1712–1717.

[9] S. Caselli, M. Reggiani, and R. Rocchi, “Heuristic Methods for
Randomized Path Planning in Potential Fields,” in Proc. 2001 IEEE
Int. Symp. Computational Intelligence in Robotics and Automation,
2001, pp. 426–431.

[10] Y. Hwang and N. Ahuja, “A Potential Field Approach to Path
Planning,” IEEE Trans. Robotics and Automation, vol. 8, no. 1, pp.
23–32, 1992.

[11] A. Yahja, S. Singh, and A. Stentz, “Recent Results in Path Planning
for Mobile Robots Operating in Vast Outdoor Environments,” in Proc.
1998 Symp. Image, Speech, Signal Processing and Robotics, 1998.

[12] A. Stentz, “Optimal and Efficient Path Planning for Partially-Known
Environments,” in Proc. 1994 IEEE Int. Conf. Robotics and Automa-
tion, vol. 4, May 1994, pp. 3310–3317.

[13] S. Kambhampati and L. Davis, “Multiresolution Path Planning for
Mobile Robots,” IEEE J. Robotics and Automation, vol. RA-2, no. 3,
pp. 135–145, 1986.

[14] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion. MIT Press,
2005.

[15] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing Schedules for
Prioritized Path Planning of Multi-Robot Systems,” in Proc. 2001
IEEE Int. Conf. on Robotics and Automation, vol. 1, 2001, pp. 27–276.

[16] S. LaValle and S. Hutchinson, “Optimal motion planning for multiple
robots having independent goals,” in Proc. 1996 IEEE Int. Conf.
Robotics and Automation, 1996, pp. 2847–2852.

[17] P. Švestka and M. Overmars, “Coordinated path planning for multiple
robots,” Robotics and Autonomous Systems, vol. 23, pp. 125–152,
1998.


