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Abstract— In this paper we build an imitation learning
algorithm for a humanoid robot on top of a general world model
provided by learned object affordances. We consider that the
robot has previously learned a task independent affordance-
based model of its interaction with the world. This model
is used to recognize the demonstration by another agent (a
human) and infer the task to be learned. We discuss several
important problems that arise in this combined framework,
such as the influence of an inaccurate model in the recognition
of the demonstration. We illustrate the ideas in the paper with
some experimental results obtained with a real robot.

I. INTRODUCTION

Imitation is a very powerful method to transfer knowledge
among different agents. In current complex humanoid robotic
systems, this capability provides an efficient tool to program
robots by demonstration. Therefore, several systems for
imitation in robots have been proposed in the literature (see
[1] for a review).

When implementing imitation learning one must consider
two fundamental problems: selection of the goal of imitation
(imitation metric) and description of the observed motion
in terms of the imitator’s own motor capabilities (body
correspondence). These problems have been addressed in
different ways in the literature. Possible approaches include
hand-coding of the correspondence between actions [2],
defining correspondences between effects instead of between
actions [3], learning basic object properties to elicit compat-
ible actions [4] or describing world-state transitions at the
trajectory level [5]. However, most such approaches fail to
considered sequences of actions. Those that consider them
exhibit simple mimicking behavior and not real imitation,
since they merely copy the observed actions [6].

In this paper we adopt the formalism in [7]. This approach
to imitation provides a unified model that spans several imita-
tion and imitation-like behaviors. Behaviors like emulation,
contextual learning and social facilitation are explained in
terms of the information extracted from the demonstration.
The core of this framework is the Bayesian inverse rein-
forcement learning algorithm [8] that extracts the reward
function from the observed demonstration. As in standard
reinforcement learning, all task information is encoded in
this reward function. Therefore, this task (reward) must be
explicitly determined for the agent to be able to generalize
(and, in some cases, even improve) the observed behavior to
situations that were not demonstrated. Based on this reward,
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the agent can determine the optimal policy, yielding the final
behavior and completing the imitation learning process.

In order to recover the reward function, the robot must
possess two capabilities: (i) it must be able to interpret the
demonstration in terms of its own action repertoire; and (ii)
it must know the world dynamics, i.e., the state transition
probabilities. These requirements are typically ensured in
a task-specific manner. However, this hinders the re-use
of previously acquired knowledge. When learning many
different tasks, this a priori information can reduce the
complexity of the learning problem.

In this paper, these prerequisites (state-action recognition
capabilities and known world model) are fulfilled by means
of a general task-independent model for affordances [9].
Introduced by Gibson [10], affordances define the relation
between an agent and the environment by means of its motor
and sensing capabilities. Thus, they relate the agent’s actions
to their effects on the surrounding objects.

The combination of affordances [11] and imitation [7]
endows the robot with learning capabilities that can be
classified as real imitation in the context of [7], [12], [13].
Real imitation explains complex learning behaviors, where
(i) learning the task is only possible given the demonstration;
and (ii) there is a generalization of the observed behavior
and not a simple copy of the observed motion. In terms of
our approach, this means that the robot determines the task
from the observed demonstration; it then chooses its actions
so as to accomplish this task, reproducing the behavior of
the demonstrator and generalizing this behavior in situations
never observed before.

Decoupling the world description (affordances) and imita-
tion has two main advantages. First, the robot is able to re-
use previous knowledge in different tasks. This is important
since learning is a very tedious task that requires extensive
experience and time. Second, the learning process in itself
is simplified.

�

Our approach, summarized in Figure 1, is part of a
more general developmental architecture for social robots
[14]. Artificial development, strongly motivated by the motor
development in biological systems, suggests that if behaviors
are built on top of others, learning complexity is strongly
reduced. Similarly, our task independent knowledge (affor-
dances) is used to facilitate learning by imitation.

We assume that the robot is already able to interact with
the world by means of several action primitives such as
grasping, tapping and touching nearby objects (we refer
to [14] for further details). By repeatedly interacting with
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Fig. 1. Diagram describing the approach in this paper. Imitation is possible
after learning about the world properties by autonomous interaction with it.

different objects, the robot learns the affordances relating
its action primitives and their effects on objects [9], thus
acquiring the ability to predict the consequences of its actions
and to recognize the actions of other agents. Notice that all
information acquired up to this point is task independent.

When learning a specif task, the system will need to
adapt the description provided by the affordances to obtain
a dynamic model for the specific problem at hand. This is
represented in Figure 1 in the block marked as “Extract world
transition model”. This transition model is already task-
specific and is obtained from the affordance-based model
with the help of a human operator. The robot can then
observe a demonstration of a specific task to be learned,
interpret it and imitate.

The method used to determine the task underlying the
demonstration is supported in the idea of inverse rein-
forcement learning [15], [16]. Given a demonstration, the
imitator determines the underlying task by considering the
likelihood of the observed actions. The method used is a
basic variation of the algorithm in [8] and accommodates
for incomplete/inaccurate demonstrations.

�

The contribution of this paper consists in the joint archi-
tecture for imitation based on an affordances model [11]
and a general imitation learning formalism [7], summarized
in Figure 1. We argue that affordances provide sufficient
information to learn by imitation. In particular, they com-
bine in a single structure an “action interpreter” and a
world transition model. As a result, previously learned, task-
independent knowledge is used to recover the appropriate
information from the observations and elicit a rich imitation
behavior. The experimental results using a real humanoid
robot platform suggest that the proposed architecture is
adequate to implement learning by imitation in real-world
tasks.

The paper is organized as follows. We start by showing
how the affordances knowledge is acquired in Section II. We
describe the framework used for imitation in Section III. In
Section IV we combine both approaches in our affordances-

based imitation learning paradigm. Finally, in Section V we
present the results obtained by implementing imitation in a
real-world setting and conclude the paper in Section VI.

II. AFFORDANCE MODELING AND LEARNING

In this section we describe how to model affordances
using a Bayesian network (BN). We briefly review standard
representation, inference and learning concepts using BNs
and describe their application to the problem of affordance
learning.

We consider a robot that has available a repertoire of
actions to interact with the world. The robot is also able
to detect and extract information from the objects around
him. We pose the affordance learning problem at this level
of abstraction, where the main entities are the available
actions A = {a1, a2, . . . , an}, the objects, described by
their observable features F = {f1, . . . , fm} and the effects
E = {e1, ..., ep}. The final goal is to determine the multiple
relations between the random variables representing actions,
features of objects and effects (see Figure 2). Notice the
difference between object features and effects: object features
can be acquired by simple observation, whereas effects
can only be observed as a consequence of interaction. The
relations between these entities are inferred as the robot acts
upon each object and observes the resulting effects.

A. Learning affordances

We use a probabilistic graphical model known as Bayesian
networks [17] to encode the dependencies between actions,
object features and the effects of those actions. A BN is
a probabilistic directed graphical model where the nodes
represent random variables and the (lack of) arcs represent
conditional independence assumptions.

The learning of affordances with a BN is performed in
two phases. First the structure is learned using Markov
Chain Monte Carlo (MCMC) [18]. Once the structure of the
network has been established, the parameters of each node
are estimated using a Bayesian approach [18]. The estimated
parameters can be subsequently updated on-line, allowing to
incorporate information provided by new experiences.

Affordances encode the probabilistic relations between
actions and perceptions (object features and effects). Fig-
ure 4 shows how the learned network captures the structural
dependencies between actions, object features and effects.
The model is able to distinguish irrelevant properties of the
objects, i.e., object features not influencing action outcomes.
This “feature selecting” effect of the structure learning
method is fundamental in planning because task execution
is often linked to the object properties and only to a lesser
extent to the objects themselves.

B. Using affordances

Since the structure of the BN encodes the relations be-
tween actions, object features and effects, it is now possible
to compute the distribution of a variable or group of variables
given the value of other variables. To this, we use the
junction tree algorithm [19] to compute the distribution of the



variables of interest. We emphasize that it is not necessary
to know the values of all the variables to perform inference.
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(O, E) A Action recognition/planning
(A,E) O Object recognition/selection

Fig. 2. Affordances as relations between (A)ctions, (O)bjects and (E)ffects,
that can be used to solve different problems: prediction, action selection or
object selection.

We are now able to use the affordance knowledge to
solve the several problems described in Figure 2 simply
by computing the appropriate distributions. In particular, for
purposes of imitation, we are interested in

1) interpret actions performed by others in terms of the
agent’s own actions, i.e. by matching the effects;

2) estimate a dynamic world model by predicting the
effects of each action in terms of the world state.

It is important to remark that the effect prediction capabilities
do not yield immediately the transition model, but allow the
construction of one such model.

III. IMITATION LEARNING

In this section we describe the fundamental process by
which the robot perceives the task to be learnt after observing
the demonstration by another agent (human). To this purpose
we adopt the formalism described in [7] that we now briefly
describe.

Formalism: At each time instant, the robot must choose an
action from its repertoire of action primitives A, depending
on the state of the environment. We represent the state of the
environment at time t by Xt and let X be the (finite) set of
possible environment states. This state evolves according to
the transition probabilities

P [Xt+1 = y | Xt = x, At = a] = Pa(x, y), (1)

where At denotes the robot’s action primitive at time t.
The action-dependent transition matrix P thus describes the
dynamic behavior of the process {Xt}.

We assume that the robot is able to recognize the actions
performed during the demonstration.1 Baring this assumption
in mind, we consider that the demonstration consists of a
sequence H of state-action pairs

H = {(x1, a1), (x2, a2), . . . , (xn, an)} .

1We will discuss the validity of this assumption further ahead.

Each pair (xi, ai) exemplifies to the robot the expected
action (ai) in each of the states visited during the demon-
stration (xi). From this demonstration, the robot is expected
to perceive what the demonstrated task is and, eventually
by experimentation, learn how to perform it optimally. A
decision-rule determining the action of the robot in each state
of the environment is called a policy and is denoted as a map
δ : X −→ A. The robot should then infer the task from the
demonstration and learn the corresponding optimal policy,
that we henceforth denote by δ∗.

In our adopted formalism, the task can be defined using a
function r : X −→ R describing the “desirability” of each
particular state x ∈ X . This function r works as a reward
for the robot and, once r is known, the robot should choose
its actions to maximize the functional

J(x, {At}) = E

[ ∞∑
t=1

γtr(Xt) | X0 = x

]
,

where γ is a discount factor between 0 and 1 that assigns
greater importance to those rewards received in the imme-
diate future than to those in the distant future. We remark
that, once r is known, the problem falls back to the standard
formulation of reinforcement learning [20].

The relation between the function r describing the task
and the optimal behavior rule can be evidenced by means of
the function Vr given by

Vr(x) = max
a∈A

r(x) + γ
∑
y∈X

Pa(x, y)Vr(y)

 (2)

The value Vr(x) represents the expected (discounted) reward
accumulated along a path of the process {Xt} starting at state
x, when the optimal behavior rule is followed. The optimal
policy associated with the reward function r is thus given by

δr(x) = arg max
a∈A

r(x) + γ
∑
y∈X

Pa(x, y)V ∗(y)


The computation of δr (or, equivalently, Vr) given P and r
is a standard problem and can be solved using any of several
standard methods available in the literature [20].

Methodology: In the formalism just described, the fun-
damental imitation problem lies in the estimation of the
function r from the observed demonstration H. Notice that
this is closely related to the problem of inverse reinforcement
learning as described in [16]. We adopt the method described
in [7], which is a basic variation of the Bayesian inverse
reinforcement learning (BIRL) algorithm in [8].

For a given r-function, the likelihood of a pair (x, a) ∈
X ×A is defined as

Lr(x, a) = P [(x, a) | r] =
eηQr(x,a)∑

b∈A eηQr(x,b)
,

where Qr(x, a) is defined as

Qr(x, a) = r(x) + γ
∑
y∈X

Pa(x, y)Vr(y)



and Vr is as in (2). The parameter η is a user-defined
confidence parameter that we describe further ahead. The
value Lr(x, a) translates the plausibility of the choice of
action a in state x when the underlying task is described by
r. Given a demonstration sequence

H = {(x1, a1), (x2, a2), . . . , (xn, an)} .

the corresponding likelihood is

Lr(H) =
n∏

i=1

Lr(xi, ai).

The method uses MCMC to estimate the distribution over
the space of possible r-functions (usually a compact subset of
Rp, p > 0), given the demonstration [8]. It will then choose
the maximum a posteriori r-function. Since we consider
a uniform prior for the distribution, the selected reward is
the one whose corresponding optimal policy “best matches”
the demonstration. The confidence parameter η determines
the “trustworthiness” of the method: it is a user-defined
parameter that indicates how “close” the demonstrated policy
is to the optimal policy [8].

Some important remarks are in order. First of all, to deter-
mine the likelihood of the demonstration for each function
r, the algorithm requires the transition model in P. If such
transition model is not available, then the robot will only
be able to replicate particular aspects of the demonstration.
However, as argued in [7], the imitative behavior obtained
in these situations may not correspond to actual imitation.

Secondly, it may happen that the transition model available
is inaccurate. In this situation (and unless the model is
significantly inaccurate) the robot should still be able to
perceive the demonstrated task. Then, given the estimated
r-function, the robot may only be able to determine a sub-
optimal policy and will need to resort to experimentation to
improve this policy. We discuss these aspects in greater detail
in the continuation.

IV. COMBINING AFFORDANCES WITH
IMITATION LEARNING

In this section we discuss in greater detail how the
information provided by the affordances described in Sec-
tion II can be combined with the imitation learning approach
described in Section III. We discuss the advantages of this
approach as well as several interesting issues that arise from
this combination.

In the previous section, we assumed the robot to be able
to recognize the actions performed by the demonstrator. This
action recognition needs not to be explicit, i.e., the agent
needs not to determine the action taken by the demonstrator.
Instead, it needs only to interpret the observed action in
terms of its own action repertoire. This interpretation may
rely on the observed state transition or in the corresponding
effects. It is important to emphasize that transitions and
effects are different concepts: the same transition may occur
from different actions/effects and the same effect can be
observed in different transitions. To clarify this distinction,
consider moving or jumping from one place to the other, the

effects are different but the transition is the same. Or motions
with different speeds that can result in the same effect, i.e.
motion, and different transition.

We should emphasize that if no action recogni-
tion/interpretation takes place, the robot will generally be
able to learn only how to replicate particular elements of
the observed demonstration. In our approach we want the
robot to learn the task more than to replicate particular
aspects of the observed demonstration. As seen in Section II,
affordances provide a functional description of the robot’s
interaction with its surroundings as well as the action-
recognition capabilities necessary to implement imitation.

Affordance-based action recognition/interpretation works
as follows. For each demonstrated action, the robot observes
the corresponding effects. The affordance network is then
used to estimate the probability of each action in the robot’s
action repertoire given the observed effects, and the action
with greatest probability is picked as the observed action.
Clearly, there will be some uncertainty in the identification
of the demonstrated action, but as will be seen in the
experimental section, this does not significantly affect the
performance of the learning algorithm.

On the other hand, given the demonstration—consisting on
a sequence of state-action pairs—the robot should be able to
infer the task to be learnt. This means, in particular, that once
the robot realizes the task to be learnt, it should be able to
learn how to perform it even in situations that were never
demonstrated.

Choosing between two policies generally requires the
robot to have a model of the world. Only with a model of the
world will the robot have the necessary information to realize
what task is more suitably accomplished by the demonstrated
policy. If no model of the world is available, then the robot
will generally only repeat the observed action pattern, with
no knowledge on what the underlying task may be. Also,
the absence of a model will generally prevent the robot from
generalizing the observed action pattern to situations never
demonstrated.

As argued in Section II, affordances empower the robot
with the ability to predict the effect of its actions in the
surrounding environment. Once the adequate state-space for
a particular task is settled, the information embedded in
the affordance network can be used to extract the dynamic
model describing the state evolution for the particular task at
hand. This action-dependent dynamic model consists of the
transition matrix P described in Section III.

Figure 3 depicts the fundamental elements in the imitation
learning architecture described, corresponding to the block
“Interpret demonstration” in Figure 1.

Several remarks are in order. First of all, the affordance
network is task independent and can be used to provide
the required information for different tasks. Notice that
the interaction model described in the affordance network
could be enriched with further information concerning the
state of the system for a specific task. This would make
the extraction of the transition model automatic, but would
render the affordance network task-dependent. This and the
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Fig. 3. Representation of the fundamental elements of an imitation learner.

very definition of affordances justifies the use of a more
general affordance model, even if requiring the transition
model to be separately extracted for each particular task.
This means that imitation can be successfully implemented
in different tasks, provided a single, sufficiently general and
task-independent model of interaction is available (such as
the one provided by the affordances).

The second important observation is concerned with the
fact that the affordance network is learnt from interaction
with the world. The combination of both learning blocks
(affordance learning and imitation learning) gives rise to a
complete architecture that allows the acquisition of skills
ranging from simple action-recognition to complex sequen-
tial tasks.

In the next section, we implement this combined ar-
chitecture in a real-robot. We illustrate the learning of a
sequential task that relies on the interaction model described
in the affordance network. We discuss the sensitivity of the
imitation learning to action recognition errors.

V. EXPERIMENTAL RESULTS

In this section, we implement our imitation learning
methodology in a sequential task. For all experiments we
used BALTAZAR [21], a robotic platform consisting of a
humanoid torso with one anthropomorphic arm and hand and
a binocular head (see Figure 7).

Prior to the experiments on imitation, the robot had already
interacted with different objects and learned the affordance
network for each of the 3 action primitives “Grasp”, “Tap”
and “Touch”. The objects were classified according to the
visual features “Color”, “Shape” and “Size” and the effects
of each action in the objects were described in terms of
“Velocity”, “Contact” and “Object-hand distance”. The struc-
ture of the corresponding affordances network is depicted
in Figure 4 (see [9] for further details). To implement the
imitation learning algorithm in the robot we considered
a simple recycling game, where the robot must separate
different objects according to their shape (Figure 5). In front
of the robot are two slots (Left and Right) where 3 types of
objects can be placed: Large Balls, Small Balls and Boxes.
The boxes should be dropped in a corresponding container
and the small balls should be tapped out of the table. The
large balls should be touched upon, since the robot is not
able to efficiently manipulate them. Every time a large ball
is touched, it is removed from the table by an external
user. Therefore, the robot has available a total of 6 possible
actions: Touch Left (TcL), Touch Right (ThR), Tap Left

ShapeColorAction Size

OH Dist Contact

Velocity

Fig. 4. Bayesian network describing the learned affordances. The general
topology of the network is action-independent; only the network parameters
change with the actions.

(TpL), Tap Right (TpR), Grasp Left (GrL) and Grasp Right
(GrR).

Kick the balls
out of the table

Drop the boxes
in the pile

Touch the large
ball

Robot

Left Right

Fig. 5. Simple recycling game.

For the description of the process {Xt} for the task at
hand, we considered a state-space consisting of 17 possible
states. Of these, 16 correspond to the possible combinations
of objects in the two slots (including empty slots). The
17th state is an invalid state that accounts for the situations
where the robot’s actions do not succeed. As described in
Section III, determining the dynamic model consists of de-
termining the transition matrix P by considering the possible
effects of each action in each possible object. From the
affordances in Figure 4 the transition model for the actions
on each object are shown in Figure 6. Notice that, if the robot
taps a ball on the right while an object is lying on the left,
the ball will most likely remain in the same spot. However,



since this behavior arises from the presence of two objects,
it is not captured in the transition model obtained from the
affordances. This means that the transition model extracted
from the affordances necessarily includes some inaccuracies.

Big ball

Empty

Invalid

Tap (0.35)
Grasp (0.60)

Tap (0.65)
Grasp (0.40)

Touch (1.0)

Small ball

Empty

Invalid

Tap (0.35)
Grasp (0.08)

Tap (0.01)
Grasp (0.92)
Touch (1.0)

Tap (0.64)

Square

Empty

Invalid

Tap (0.35)
Grasp (0.20)

Tap (0.65)
Grasp (0.25)
Touch (1.0)

Grasp (0.55)

Fig. 6. Transition diagrams describing the transitions for each slot/object.

To test the imitation, we provided the robot with an error-
free demonstration of the optimal behavior rule. As expected,
the robot was successfully able to reconstruct the optimal
policy. We also observed the learned behavior when the
robot was provided with two different demonstrations, both
optimal, as described in Table I. Each state is represented as a
pair (S1, S2) where each Si can take one of the values “Ball”
(Big Ball), “ball” (Small Ball), “Box” (Box) or ∅ (empty).
The second column of the table lists the observed actions
for each state, and the third column lists the learned policy.
Notice that, once again, the robot was able to reconstruct an
optimal policy, by choosing one of the demonstrated actions
in those states where different actions were observed.

In another experiment, we provided the robot with an
incomplete and inaccurate demonstration. In particular, the
action at state (∅, Ball) was never demonstrated and the
action at state (Ball, Ball) was wrong. Table I shows the
demonstrated and learned policies. Notice that in this partic-
ular case the robot was able to recover the correct policy,
even with an incomplete and inaccurate demonstration,.

In Figure 7 we illustrate the execution of the optimal
learned policy for the initial state (Box, SBall).2

We then tested the action recognition capabilities of the
robot when using the information provided by the affor-
dances. A demonstrator performed several actions upon dif-
ferent objects and the robot classified these actions according
to the observed effects (see Figure 8). The accuracy of the
recognition varied, depending on the performed action, on
the demonstrator and on the speed of execution, but for all
actions the recognition was successful with an error rate
between 10% and 15%. The errors in action recognition

2For videos showing additional experiences see
http://vislab.isr.ist.utl.pt/baltazar/demos/

TABLE I
EXPERIMENT 1: ERROR FREE DEMONSTRATION (DEMONSTRATED AND

LEARNED POLICIES). EXPERIMENT 2: INACCURATE, INCOMPLETE

DEMONSTRATION (DEMONSTRATED AND LEARNED POLICIES), THE

BOXED DEMONSTRATION CORRESPOND TO THE INCOMPLETE AND

INACCURATE DEMONSTRATIONS.

State Demo1 Learned Demo2 Learned

(∅, Ball) TcR TcR - TcR
(∅, Box) GrR GrR GrR GrR
(∅, ball) TpR TpR TpR TpR
(Ball, ∅) TcL TcL TcL TcL

(Ball, Ball) TcL,TcR TcL,TcR GrR TcL
(Ball, Box) TcL,GrR GrR TcL TcL
(Ball, ball) TcL TcL TcL TcL
(Box, ∅) GrL GrL GrL GrL

(Box, Ball) GrL,TcR GrL GrL GrL
(Box, Box) GrL,GrR GrR GrL GrL
(Box, ball) GrL GrL GrL GrL

(ball, ∅) TpL TpL TpL TpL
(ball, ball) TpL,TcR TpL TpL TpL
(ball, Box) TpL,GrR GrR TpL TpL
(ball, ball) TpL TpL TpL TpL

a) Initial state. b) GraspL.

c) TapR. d) Final state.

Fig. 7. Execution of the learned policy in state (Box, SBall).

are not surprising and are justified by the different view-
points during the learning of the affordances and during
the demonstration. In other words, the robots learns the
affordances by looking at its own body motion, but the action
recognition is conducted from an external point-of-view. In
terms of the image, this difference in viewpoints translates
in differences on the observed trajectories and velocities,
leading to some occasional mis-recognitions. We refer to [6]
for a more detailed discussion of this topic.

To assess the sensitivity of the imitation learning module
to the action recognition errors, we tested the learning
algorithm for different error recognition rates. For each error
rate, we ran 100 trials. Each trial consists of 45 state-action
pairs, corresponding to three optimal policies. The obtained



a) Grasp. b) Tap.

Fig. 8. Testing action recognition from a demonstrator.

results are depicted in Figure 9.
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Fig. 9. Percentage of wrong actions in the learned policy as the action
recognition errors increase.

As expected, the error in the learned policy increases as
the number of wrongly interpreted actions increases. Notice,
however, that for small error rates (≤ 15%) the robot is
still able to recover the demonstrated policy with an error
of only 1%. In particular, if we consider the error rates of
the implemented action recognition method (between 10%
and 15%), the optimal policy is accurately recovered. This
allows us to conclude that action recognition using the
affordances is sufficiently precise to ensure the recovery of
the demonstrated policy.

VI. CONCLUSIONS

In this paper we presented a combined architecture for
robotic imitation, based on an affordances model [9], [11]
and a general imitation learning method/formalism [7]. The
model of interaction provided by the affordances endows the
robot with sufficient knowledge to be able to learn complex
behaviors by imitation.

We implemented our methodology in humanoid robotic
torso. The robot had to learn a sequential task after ob-
serving a person execute it. We emphasize that there is no
reinforcement given to the robot by any external user and
no supervision is conducted on any step of the learning
process. The task description is extracted by observing the
demonstrator execute it. In the conducted experiments, the
robot was able to successfully determine the underlying task
by relying on the knowledge provided by the affordances,

relating the actions of the robot with the resulting effects on
objects.

The results showed the method to be robust even in the
presence of incomplete and incoherent demonstractions and
also under action-recognition errors.

Future work should address the problem of recovering the
(task-specific) transition model from the (task-independent)
model provided by the affordances. At the present stage, this
is accomplished by an external user. We are interested in
developing an automated method to perform this task.
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