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Abstract: In this paper we address multi-robot coordinated navigation from a
topological perspective. The adopted topological representation of the environment
leads naturally to a Markov game model to describe the interaction of the multiple
robots in the environment. In this setting, we combine the Q-learning algorithm
with a powerful coordination mechanism (biased adaptive play). We show that this
combined algorithm, coordinated Q-learning, converges to an optimal, coordinated
solution for the navigation problem. This implies that the team of robots is able to
coordinate without using any communication protocol to enforce the coordination.
We illustrate our method in some simple navigation tasks.
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1. INTRODUCTION
In recent years, particular interest has been de-
voted to the use of topological maps in robotic
navigation. A topological map represents an envi-
ronment as a discrete set of states (the nodes in
a graph) and the transition information between
the states (the edges of a graph). This type of en-
vironments may be easily described using Markov
processes and, in fact, Markov processes have al-
ready been used to model robotic navigation tasks
using different methodologies, (Cassandra et al.,
1987; Melo and Ribeiro, 2005).

In this paper, we are interested in addressing coop-
erative multi-robot navigation problems. Research
on cooperative multi-robot systems typically fo-
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cuses on three fundamental issues (Cao et al.,
1997): the task to accomplish, the mechanism of
cooperation and the attained performance. The
model of team Markov games, used in this paper,
immediately settles two of the fundamental issues
referred above, by considering a reward structure
that, simultaneously, defines the task and is used
to evaluate the performance of the team.

We consider problems in which a group of robots
must navigate from an initial configuration to
a final configuration, avoiding “accidents” result-
ing from mis-coordinations. To this purpose, all
robots must coordinate in a common “strategy”.
We admit, however, that no explicit communica-
tion takes place, i.e., consensus in this common
joint strategy must emerge from the mutual in-
teraction among the different robots and with the
environment. 3 Therefore, the class of problems

3 The consideration of no explicit communication can be
supported by several arguments. We do not pursue such



considered herein feature cooperation as coordi-
nation: the multiple decision-makers must coordi-
nate their individual decisions to yield an optimal
joint behavior. Further references on coordination
in navigation tasks include Alami et al. (1994);
Bennewitz et al. (2001); LaValle and Hutchinson
(1996) and references therein.

We use a Markov game with identical interests
to model a group of mobile robots that must
perform some navigation task in a coordinated
fashion (such as reaching a goal configuration).
We propose a learning algorithm that ensures
coordination without relying on any explicit com-
munication between the different robots.

2. TOPOLOGICAL NAVIGATION AND
MARKOV MODELS

In this section we introduce the framework of
Markov models used throughout the paper.

2.1 Markov decision processes
Consider a mobile robot moving in an environ-
ment. Suppose that such robot must perform some
given task in a specific location of the environ-
ment. Suppose, furthermore, that the environ-
ment may be represented by a topological map,
as the one depicted in Fig. 1.
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Fig. 1. Example of a topological map.

In a topological map, the environment is dis-
cretized in a set X of states corresponding to
possible “topological locations” for the robot.
At each time instant t, the robot has available
a finite set A of possible actions (e.g., “move
North”, “go to state 2”, etc.). Whenever the robot
chooses a give action a ∈ A in state i ∈ X ,
it will move to state j ∈ X with probability
P [Xt+1 = j | Xt = i, At = a] = Pa(i, j), where Xt

and At represent the state and the action of the
robot at time instant t. For each a ∈ A, Pa is the
transition probability matrix.

We consider that every time the robot moves
from state i to state j by taking an action a,
it is rewarded with a numerical reward r(i, a, j).
This reinforcement signal provides the robot with
evaluative feedback : the reward works as a quan-
titative evaluation on “how well the robot is do-
ing” and formalizes the navigation purpose for the

argument here and refer to several works that discuss these
issues in greater detail (Durfee et al., 1987; Tsitsiklis and
Athans, 1985).

robot. The robot must then choose the sequence
of control actions, {At}, so as to maximize the
functional

V (i, {At}) = E

[ ∞∑
t=0

γtR(Xt, At) | Xt = i

]
, (1)

where R(Xt, At) is the random reward received
at time instant t and 0 < γ < 1 is a discount
factor assigning greater importance to more im-
mediate rewards than to those in a distant future.
Notice that R(x, a) in (1) is a random variable,
since it depends on the (random) state transition.
This occurs even if r is deterministic. The tuple
(X,A, P, r, γ) is aMarkov decision process (MDP)
and is a suitable model for single-robot topological
navigation tasks.

Given an MDP (X,A,P, r, γ), the optimal value
function V ∗ is defined for each state i ∈ X as

V ∗(i) = max
{At}

E

[ ∞∑
k=0

γtR(Xt, At) | X0 = i

]
(2)

and verifies

V ∗(i) = max
a∈A

∑
j∈X

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
, (3)

which is a form of the Bellman optimality equa-
tion. The optimal Q-values Q∗(i, a) are defined for
each state-action pair (i, a) ∈ X ×A as

Q∗(i, a) =
∑
j∈X

Pa(i, j)
[
r(i, a, j) + γV ∗(j)

]
. (4)

If V ∗(i) “measures” the total discounted reward
obtained during an expectedly optimal trajectory
starting at state i, Q∗(i, a) measures the total
discounted reward obtained during an expectedly
optimal trajectory starting at state i when the
first action is a. We notice that the optimal
control sequence {At} can be easily computed
from Q∗ as a function of the state, At(Xt) =
maxa∈AQ∗(Xt, a), so we can focus the learning
process on determining Q∗.

The optimal Q-function can be approximated by a
sequence of functions {Qn}, generated recursively
by

Qn+1(i, a) = Qn(i, a) + αn(i, a)
[
R(i, a)+

+ γ max
b∈A

Qn(X(i, a), b)−Qn(i, a)
]
,

(5)

where X(i, a) is random variable obtained accord-
ing to the transition probabilities defined by P and
{αn(i, a)} is a sequence of step-sizes. The sequence
{Qn} will converge to Q∗ as long as each pair (i, a)
is “visited” infinitely often and the step-sizes are
adequately chosen (Watkins, 1989). Expression
(5) is the update equation of Q-learning, a widely
known method that we use in our multi-robot
algorithm.

2.2 Team Markov games
Markov games can be interpreted as generaliza-
tions of MDPs to multiple robots. Therefore, a



Markov game is a tuple
(
N,X , (Ak), P, (rk), γ

)
,

where N is the number of players, X is the state-
space, A = ×N

k=1Ak is the set of joint actions, P
is the controlled transition matrix and rk is the
reward function for player k.

In this paper, we are interested in fully co-
operative Markov games, also known as team
Markov games. A team Markov game is a tuple(
N,X , (Ak),P, r, γ

)
where the reward function r

is common to all players.

In our model all robots share the same goal, which
is to maximize the total expected reward over
all admissible control sequences {At}, defined as
in (1), where now R(i, a) is the random reward
received by all robots for taking the joint action
a in state i. It is immediate to define the optimal
value function V ∗ for a team Markov game as in
(2), where now At stands for the joint action at
time t. This optimal value function also verifies
(3) and we can define the optimal Q-function, Q∗,
as in (4).

To further clarify the relation between MDPs
and team Markov games, consider a group of
robots that must complete some navigation task
(e.g., reach some pre-specified configuration).
Markov decision processes describe this situation
when the control of the robots is centralized. Team
Markov games describe this exact same situation
but when the control of the robots is decentralized,
i.e., each robot chooses its own action indepen-
dently of the other robots.

3. COORDINATION
Consider the scenario depicted in Fig. 2.

Robot 1 Robot 2

Solution 1 Solution 2

Fig. 2. Example with 2 robots in a 2×2 grid-world.

Two robots (1 and 2) must move from the corre-
sponding cell in the bottom row to the opposite
cell in the top row, without colliding with each
other (i.e., lying in the same cell). There are
several optimal ways of doing this, two of which
are depicted in Fig. 2. Suppose now that Robot 1
opts by choosing Solution 2 and Robot 2 opts
by choosing Solution 1 (recall that we assume no
communication). This means that they will collide
in the middle cell in the bottom row, which is an
undesirable behavior.

This problem is known as a coordination problem
(Boutilier, 1999). Even if all robots know the
model and the solutions, it is still necessary to

devise some specific mechanism to ensure that,
in the presence of multiple solutions, all robots
will commit to the same one. This mechanism can
rely on implicit assumptions on the way the other
robots choose their actions (Lauer and Riedmiller,
2000), communication (Fischer et al., 2004), social
conventions (Findler and Malyankar, 2000) or
coordination graphs (Guestrin et al., 2002).

In this paper we are interested in addressing
coordination as a result of interaction among
the robots: coordination should emerge from the
interaction among the several robots rather than
being “intrinsically implanted”. We also consider
that no explicit communication takes place.

Several works in the literature address the prob-
lem of emerging coordination in multi-agent sys-
tems, all relying in history-based coordination
mechanisms, such as fictitious play (Claus and
Boutilier, 1998), adaptive play (Young, 1993) or
biased adaptive play (Wang and Sandholm, 2003).
In this paper we use biased adaptive play (BAP),
since it actually provides stronger convergence
guarantees and combine it with Q-learning.

This combined method, dubbed as coordinated Q-
learning (CQL), endows the robots with a pow-
erful way of learning how to complete the task
using no model of the world while simultaneously
learning to coordinate in the execution of that task.
We further mention that, in Wang and Sandholm
(2003), BAP is combined with a simplified vari-
ant of adaptive real-time dynamic programming
(ARTDP), a model-based learning algorithm. In
that same work, the authors mention the interest
of combining biased adaptive play with a model-
free learning algorithm, contribution that is pro-
vided in our paper.

3.1 Biased adaptive play
We now briefly describe BAP and its main proper-
ties. Due to space limitations, we do not dwell on
the details of the algorithm and refer to Melo and
Ribeiro (2007) for a more thorough treatment.

To describe how BAP works, we start by re-
marking that coordination at each state i ∈ X
can be attained by considering the team matrix
game Γi = (N, (Ak), Q∗(i, ·)). This matrix game
consists of a set of N players, each with a set
Ak of available actions. In this class of games,
all players “receive a payoff” of Q∗(i, a) whenever
they play the joint action a. This is a one-shot
game where every player wants to maximize the
attained reward in a single play. Coordination in
the original team Markov game can be attained
by coordinating in each of the matrix games Γi

(Boutilier, 1999). This is the purpose of BAP.

To describe BAP, we first construct a virtual
game V G(i) =

(
N, (Ak), rV G

)
from Γi, where

rV G(a) = 1 if a = opt(i) and 0 otherwise. We



denoted by opt(i) the set of optimal joint actions
in state i. We allow the N players to repeatedly
engage in this virtual game and let Ht be a vector
with the last m joint plays at the tth play of the
game. Now given two integers K ≤ m, we refer to
a set K(Ht) of K samples randomly drawn from
Ht without replacement as a K-sample. A “BAP
player” k draws a K-sample from the history of
the m most recent plays and checks if

(1) There is a joint action a∗ ∈ opt(i) such that,
for all the actions a ∈ K(Ht), a−k = (a∗)−k;

(2) There is at least one action a∗ ∈ opt(i) such
that a∗ ∈ K(Ht).

If these two conditions are verified, player k be-
lieves that the remaining players have coordinated
in an optimal action (a∗)−k. and chooses the last
played action a∗ ∈ opt(i) verifying 2. If either
1 or 2 (or both) do not hold, player k uses the
K-sample to estimate the strategies of the other
players and chooses its action as a best response
to this estimate. It has been shown that BAP
ensures coordination w.p.1 as t → ∞ as long
as m ≥ K(N + 2)—see Theorems 1 and 3 and
Lemma 4 in (Wang and Sandholm, 2003).

4. COORDINATED Q-LEARNING

In our description of the CQL algorithm, we con-
sider two essential components: (1) learning the
game; and (2) learning to coordinate. Learning
the game consists in estimating the optimal Q-
function; learning to coordinate consists in agree-
ing upon an optimal joint behavior.

4.1 Learning the game

In CQL, each robot uses the Q-learning update
rule in (5) to learn the optimal Q-values. Since
all robots receive the same reward and admittedly
observe (a posteriori) all actions chosen, all robots
maintain, at each time instant, a common esti-
mate Qt of Q∗. As seen in Section 2, if every state-
action pair (i, a) is visited infinitely often, the
sequence {Qt} converges to Q∗ with probability
1, independently of the strategy used to explore
the environment. This result is standard and can
be found in numerous references in the literature,
e.g., Littman (2001).

On the other hand, it is important to ensure
sufficient exploration as the robots coordinate. In
fact, it is important to ensure sufficient visits to
every pair (i, a), even as the robots coordinate.
The use of exploration policies that become greedy
in the limit has been shown to settle this issue
in a satisfactory way, for the purposes of this
paper. Such policies, known as greedy in the limit
with infinite exploration (GLIE) were thoroughly
studied in Singh et al. (2000) and their application
to multi-agent scenarios in Littman (2001); Wang
and Sandholm (2003). In this work, we adopt

a Boltzmann-greedy policy that explores with a
probability given by a Boltzmann distribution.

4.2 Learning to coordinate
Recall that, in BAP, the players use the function
Q∗ to define a matrix game Γi to ensure coordi-
nation. However, during learning, the robots do
not know the function Q∗, but rather an approx-
imate estimate Qt of Q∗ that they must use to
coordinate.

To achieve coordination during learning we con-
sider a sequence {V Gt} of virtual games built
from the estimates Qt by making use of the con-
cept of ε-optimal actions. Each virtual game V Gt

is thus defined as a tuple V Gt =
(
N, (Ak), rt

)
,

where the payoff function is

rt(a) =

{
1 if a ∈ optεt(i);
0 otherwise.

We denoted by optεt(i) the set of εt-optimal
actions with respect to Qt at state i. As εt → 0,
all suboptimal actions are eliminated from the
virtual games V Gt and we need only guarantee
that εt → 0 more slowly than Qt → Q∗. This is
established in the following result.

Theorem 1. Let Γ =
(
N,X , (Ak), P, r, γ

)
be a

team Markov game with N players. Suppose that
the following conditions hold:

(1) The players use the Q-learning update rule
in (5) to learn the optimal Q-function;

(2) The players use BAP with GLIE exploration
to coordinate in each stage-game;

(3) Each virtual game V Gt used in BAP consid-
ers εt-optimal strategies;

(4) The sequence {εt} decreases monotonically
to zero and verifies

lim
t→∞

√
log log(Nt)

Nt

εt
= 0, (6)

where Nt is number of visits to the least
visited state-action pair at time t;

(5) The the lengths of the history Ht and K-
sample h, m and K, verify m ≥ K(N + 2).

Then, the sequence of estimates
{
Qk

t

}
generated

by CQL converges to Q∗ w.p.1. Furthermore,
all players in N coordinate in an optimal Nash
equilibrium of Γ w.p.1.
Proof See Melo and Ribeiro (2007) 2

5. RESULTS
We now present the results obtained in several
simple sample scenarios using the CQL algorithm.

The first set of results was obtained in several
small grid-world problems. We present in Fig-
ures 4 and 5 the results obtained in 2×2 and 3×3
grid worlds. In both problems, each of two play-
ers must reach the opposite corner (see Fig. 3).



When both players reach the corresponding cor-
ners, they receive a common reward of 20. If they
“collide” in some state, they receive a reward of
-10. Otherwise, they receive a reward of 0. The
robots can move in one of four directions: N , S,
E and W , these being the 4 available individual
actions. When a robot chooses to move in a given
direction, it moves to the adjacent state in that
direction (if there is one) with probability 0.9 and
remains in the same state with probability 0.1.
Since we consider only two robots moving, each
with 4 possible actions, this makes a total of 16
possible joint actions. The number of states is 16
and 81, respectively.

Fig. 3. Generic n× n grid world.

In each of the Figures 4 and 5 we presented
the total reward obtained during learning and
the probability of coordination/exploration. Ini-
tially, the robots explored the environment (low
coordination probability). As the probability of
coordination approaches 1, the robots start co-
ordinating in their action choice, as seen by the
inflection in the reward plots. This means that
in both grid-world tests both players learned to
coordinate using the CQL algorithm. Notice that
the probability of coordination converges to 1 and,
as seen in the cumulative reward plot, they are
capable of avoiding collision (both curves present
positive slope). Notice that coordination in the
2× 2 grid is “harder” than in the 3× 3 grid, since
there is less space to avoid collisions.
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Fig. 4. Cumulative reward and probability of
coordination obtained in the 2×2 navigation
problem.

The second test considers a somewhat more elab-
orate scenario, depicted in Fig. 6. In this scenario,
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Fig. 5. Cumulative reward and probability of coor-
dination obtained in the 3×3 grid navigation
problem. The values in the time scale should
be multiplied by 104.

the robots can be in one of 4 possible orientations
in each cell (N , S, E and W ) and 3 possible ac-
tions: turn left, turn right and move forward. The
actions turn-left/turn-right make a 90o turn in the
corresponding direction with a probability of 0.9.
With a probability of 0.05 the robots either keep
the same orientation unchanged, or turn 180o. The
move action behaves similarly to the actions in the
grid-world.

Fig. 6. Small maze world.

Notice that, although the number of joint actions
is now only 9, the total number of states is
29 584. We also assumed that the robots have
some uncertainty regarding their joint position in
the environment, arising from sensor noise. They
keep, at each step, a “belief” vector, describing
the probability of being in each of the possible
joint states. The robots then decide according to
the most likely state. The obtained performance
is depicted in Fig. 7.

6. CONCLUDING REMARKS
We conclude the paper with several important
remarks. First of all, the CQL algorithm is closely
related to optimal adaptive learning (OAL) as
described in Wang and Sandholm (2003). While
CQL combines Q-learning with biased adaptive
play, OAL combines model-based learning with
biased adaptive play. As detailed in Melo and
Ribeiro (2007), the only complication in combin-
ing Q-learning with biased adaptive play resides



Fig. 7. Cumulative reward and probability of co-
ordination obtained in the larger navigation
problem. The values in both scales should be
multiplied by 105.

in suitably choosing a decay rate for the sequence
εt.

A second remark is related with the problem
of coordination in multi-robot learning problems.
When considering multi-robot learning problems,
coordination should always be explicitly accounted
for. The existence of multiple optimal strategies
may lead the joint behavior of a group of robots to
be arbitrarily poor if no coordination is enforced,
even if all robots know exactly the world and its
model. If the robots are to learn to coordinate
while learning the game itself, the coordination
mechanism must be supported by the past history
of the game.

Future work addressing complex environments
(with large/infinite state-spaces) should take into
account the impact of compact representations of
the state-space on how coordination can now be
obtained from the history of the process.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the helpful
discussions with Prof. Manuela Veloso.

REFERENCES

R. Alami, F. Robert, F. Ingrand, and S. Suzuki. A
paradigm for plan-merging and its use for multi-
robot cooperation. In Proc. 1994 IEEE Int.
Conf. Systems, Man, and Cybernetics, pages
612–617, 1994.

M. Bennewitz, W. Burgard, and S. Thrun. Op-
timizing schedules for prioritized path planning
of multi-robot systems. In Proc. 2001 IEEE Int.
Conf. Robotics and Automation, pages 271–276,
2001.

C. Boutilier. Sequential optimality and coordi-
nation in multiagent systems. In Proc. 16th
IJCAI, pages 478–485, 1999.

Y. Cao, A. Fukunaga, and A. Kahng. Cooperative
mobile robotics: Antecedents and directions.
Autonomous Robots, 4(1):1–23, 1997.

A. Cassandra, L. Kaelbling, and J. Kurien. Acting
under uncertainty: Discrete Bayesian models
for mobile-robot navigation. Math. Operations
Research, 12(3):441–450, 1987.

C. Claus and C. Boutilier. The dynamics of re-
inforcement learning in cooperative multiagent
systems. In Proc. 15th AAAI, pages 746–752,
1998.

E. Durfee, V. Lesser, and D. Corkill. Coher-
ent cooperation among communicating problem
solvers. IEEE Trans. Computers, 36(11):1275–
1291, 1987.

N. Findler and R. Malyankar. Social structures
and the problem of coordination in intelligent
agent societies. Invited talk at IMACS World
Congress (2000), 2000.

F. Fischer, M. Rovatsos, and Gerhard
Weiss. Hierarchical reinforcement learning
in communication-mediated multiagent
coordination. In Proc. 3rd AAMAS, pages
1334–1335, 2004.

C. Guestrin, M. Lagoudakis, and R. Parr. Coor-
dinated reinforcement learning. In Proc. 19th
ICML, pages 227–234, 2002.

M. Lauer and M. Riedmiller. An algorithm for
distributed reinforcement learning in coopera-
tive multi-agent systems. In Proc. 17th ICML,
pages 535–542, 2000.

Steven M. LaValle and Seth A. Hutchinson. Opti-
mal motion planning for multiple robots having
independent goals. In Proc. 1996 IEEE Int.
Conf. Robotics and Automation, pages 2847–
2852, 1996.

M. Littman. Value-function reinforcement learn-
ing in Markov games. J. Cognitive Systems
Research, 2(1):55–66, 2001.

F. Melo and I. Ribeiro. Transition entropy in
partially observable Markov decision processes.
In Proc. IAS-9, 2005. (to appear).

F. Melo and I. Ribeiro. Rational and convergent
model-free adaptive learning for team Markov
games. Technical Report RT-601-07, Institute
for Systems and Robotics, Feb. 2007.

S. Singh, T. Jaakkola, M. Littman, and C. Szepes-
vari. Convergence results for single-step on-
policy reinforcement-learning algorithms. Ma-
chine Learning, 38(3):287–310, 2000.

J. Tsitsiklis and M. Athans. On the complexity
of decentralized decision making and detection
problems. IEEE Trans. Automatic Control, AC-
30(5):440–446, 1985.

X. Wang and T. Sandholm. Reinforcement learn-
ing to play an optimal Nash equilibrium in team
Markov games. In Procs. NIPS’03, pages 1571–
1578. 2003.

C. Watkins. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge Univ., May
1989.

H. Peyton Young. The evolution of conventions.
Econometrica, 61(1):57–84, 1993.


