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Abstract. In this paper we analyze the convergence of independent
adaptive learners in repeated games. We show that, in this class of games,
independent adaptive learners converge to pure Nash equilibria in self
play, if they exist, and to a best response strategy against stationary
opponents. We discuss the relation between our result and convergence
results of adaptive play [1]. The importance of our result stems from the
fact that, unlike adaptive play, no communication/action observability is
assumed. We also relate this result to recent results on the convergence of
weakened ficticious play processes for independent learners [2,3]. Finally
we present experimental results illustrating the main ideas of the paper.

1 Introduction

Game theory is traditionally used in economics, where it provides powerful mod-
els to describe interactions of economical agents. However, recent years have
witnessed an increasing interest from the computer science and robotic commu-
nities in applying game theoretic models to multi-agent systems. For example,
the interaction of a group of robots moving in a common environment can be
naturally captured using a game theoretic model and their observed behavior
suitably interpreted using game theoretic concepts.

When addressing game theory from a learning perspective, Boutilier [4] dis-
tinguishes two fundamental classes of learning agents: independent learners (IL)
and joint-action learners (JAL). The former have no knowledge on the other
agents, interacting with the environment as if no other decision-makers existed.
In particular, they are unable to observe the rewards and actions of the other
agents. Joint action leaners, on the contrary, are aware of the existence of other
agents and are capable of perceiving (a posteriori) their actions and rewards.

Learning algorithms considering JALs are easily implementable from standard
single-agent reinforcement learning algorithms [5]. Action observability allows a
learning agent to build statistics on the other agents’ behavior-rules and act in a
best-response sense. This is the underlying principle of standard methods such as
fictitious play [6] or adaptive play [1]. Joint action observability is also commonly
assumed in several domains studied in the economic literature (e.g., auctions or
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exchanges1) and several learning algorithms are available that make use of such
assumption [7, 8].

However, in many practical applications it is not reasonable to assume the ob-
servability of other agents’ actions. Most agents interact with their surroundings
by relying on sensory information and action recognition is often far from trivial.
With no knowledge on the other agents’ actions and payoffs, the problem be-
comes more difficult. In [9,4] some empirical evidence is gathered that describes
the convergence properties of reinforcement learning methods in multi-agent
settings. In [10], the authors study independent learners in deterministic set-
tings. Posterior works [11,12] address non-deterministic settings. Recent results
have established the convergence of a variation of fictitious play for independent
learners [3]. In a different approach, Verbeeck et al. [13] propose an independent
learning algorithm for repeated games that converges to a fair periodical policy
that periodically alternates between several Nash equilibria.

In this paper, we propose and analyze the performance of independent adaptive
learning, a variation of adaptive play for independent learners. This algorithm
has an obvious advantage over the original adaptive learning algorithm [1], since
it does not require each player to be able to observe the plays by the other
agents. Furthermore, no a priori knowledge of the payoff function is required.
Our results show that a very simple learning approach, requiring no communi-
cation or knowledge on the other agents, is still able to exhibit a convergent and
rational behavior, in the sense of [14]. This means that independent adaptive
learning is able to attain a Nash equilibrium in self-play and converge to a best-
response strategy against stationary opponents. We show that, in weakly acyclic
repeated games, independent adaptive learners converge to pure Nash equilib-
ria, if they exist. This convergence is attained in both beliefs and behavior. We
experimentally validate our results in several simple games.

2 Background

In this section we introduce some background material that will be used through-
out the paper.

2.1 Strategic and Repeated Games

A strategic game is a tuple
(
N, (Ak), (rk)

)
, where N is the number of players,

Ak is the set of individual actions of player k, k = 1, . . . , N and A = ×N
k=1Ak

is the set of joint actions for the group. Each function rk : A → R is a reward
function or payoff function, defining a preference relation on the set A.

We represent an element a ∈ A as a N -tuple a = (a1, . . . , aN ) and refer it as
a joint action or action profile. The tuple a−k = (a1, . . . , ak−1, ak+1, . . . , aN ) is
a reduced joint action, and we write a = (a−k, ak) to denote that the individual
action of player k in the joint action a is ak.

1 Exchanges are also known as double actions.
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In strategic games it is not possible to have memory effects in the players. If
memory of past plays is possible, we refer to such a game as a repeated game.
In a repeated game, N players repeatedly engage in a strategic game defined
as usual as a tuple

(
N, (Ak), (rk)

)
. The repeated interaction allows the players

to maintain, for example, statistics describing the strategies of the other players
and use these statistics to play accordingly.

A strategic game is zero-sum or strictly competitive if it has 2 players and
r1 = −r2, and general-sum otherwise. A general sum game is fully cooperative if
r1 = . . . = rN .

2.2 Nash Equilibria

A Nash equilibrium of a strategic game
(
N, (Ak), (rk)

)
is an action profile a∗ ∈ A

such that, for every player k = 1, . . . , N , rk(a∗) ≥ rk(a∗
−k, ak), for all ak ∈ Ak. In

a Nash equilibrium no player benefits from individually deviating its play from
a∗. We emphasize that not every strategic game has a Nash equilibrium.

A strategy for player k is a probability distribution over the set Ak. A strategy
σk assigns a probability σk(ak) to each action ak ∈ Ak. We say that player k
follows strategy σk when playing the game

(
N, (Ak), (rk)

)
if it chooses each

action ak ∈ Ak with probability σk(ak). If a strategy σk assigns probability 1
to some action ak ∈ Ak, then σk is a pure strategy. Otherwise, it is called a
mixed strategy. We define the concepts of joint strategy or strategy profile and
reduced joint strategy in a similar manner as defined for actions. The support of
a strategy σk is the set of all actions ak ∈ Ak such that σk(ak) > 0.

A mixed strategy Nash equilibrium of a strategic game
(
N, (Ak), (rk)

)
is a

strategy profile σ∗ such that, for any strategy σ and for every player k = 1, . . . , N ,

Eσ∗ [Rk] ≥ E(σ∗
−k, σk) [Rk] (1)

where Eσ∗ [·] is the expectation conditioned on the strategy σ∗ and Rk is the
random variable denoting the outcome of the game for player k. The Nash
equilibrium is strict if (1) holds with a strict inequality. Every strategic game(
N, (Ak), (rk)

)
with finite A has a mixed strategy Nash equilibrium.

2.3 Fictitious Play

Fictitious play is an iterative procedure originally proposed by Brown [6] to
determine the solution for a strictly competitive game. This procedure was shown
to converge in this class of games in [15] and later extended to other classes of
games by several authors (see, for example, [3]).

In its original formulation, two players repeatedly engage in a strictly com-
petitive game. Each player maintains an estimate of the other player’s strategy
as follows: let Nt(a) denote the number of times that the individual action a was
played up to (and including) the tthplay. At play t, player k estimates the other
player’s strategy to be

σ̂−k(a−k) =
Nt(a−k)

t
,
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for each a−k ∈ A−k. The expected payoff associated with each individual action
of player k is then

EP (ak) =
∑

a−k∈A−k

rk(a−k, ak)σ̂−k(a−k).

Player k can now choose its action from the set of best responses,

BR =
{

ak ∈ Ak | ak = arg max
uk∈Ak

EP (uk)
}

.

Robinson [15] showed that this methodology yields two sequences {σ̂1}t and
{σ̂2}t converging respectively to σ∗

1 and σ∗
2 such that (σ∗

1 , σ∗
2) is a Nash equilib-

rium for the game
( {1, 2} , (Ak), (rk)

)
.

2.4 Adaptive Play

Adaptive play was first proposed by Young [1] as an alternative method to
fictitious play. The basic underlying idea is similar to fictitious play, but the
actual method works differently from fictitious play. For games which are weakly
acyclic, adaptive play converges with probability 1 (w.p.1) to a pure strategy
Nash equilibrium, both in beliefs and in behavior.

Let h be a vector of length m. We refer to any set of K samples randomly
drawn from h without replacement as a K-sample and denote it generically by
K(h), where K and m are any two integers such that 1 ≤ K ≤ m

Let Γ =
(
N, (Ak), (rk)

)
be a repeated game played at discrete instants of time

t = 1, 2, . . .. At each play, each player k = 1, . . . , N chooses an action ak(t) ∈ Ak

as described below, and the action profile a(t) = (a1(t), . . . , aN (t)) is referred to
as the play at time t. The history of plays up to time t is a vector (a(1), . . . , a(t)).

Let K and m be two given integers as described above. At each time instant
t = 1, 2, . . ., each player k = 1, . . . , N chooses its action ak(t) as follows. For
t ≤ m, ak(t) is chosen randomly from Ak; for t ≥ m + 1, player k inspects K
plays drawn without replacement from the most recent m plays. We denote by
Ht the m most recent plays at time t. Let NK(a−k) be the number of times
that the reduced action a−k appears in the K-sample K(Ht). Player k then uses
K(Ht) and determines the expected payoff EP (ak) for each ak ∈ Ak as

EP (ak) =
∑

a−k∈A−k

rk(a−k, ak)
NK(a−k)

K

It then randomly chooses its action from the set of best responses,

BR =
{

ak ∈ Ak | ak = arg max
uk∈Ak

EP (uk)
}

.

Notice that this procedure is similar to fictitious play in that it chooses the best
response action to the estimated reduced strategy σ̂−k. The only difference lies
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in the fact that adaptive play uses incomplete history sampling, while fictitious
play uses the complete history.

Young [1] established the convergence of adaptive play for repeated games that
are weakly acyclic. To properly introduce such result, let Γ =

(
N, (Ak), (rk)

)
be

a strategic game with finite action-space A = ×N
k=1Ak. The best response graph

for Γ is a directed graph G = (V, E), where each vertex corresponds to a joint
action (i.e., V = A) and any two actions a, b ∈ A, are connected by a directed
edge (a, b) ∈ E if and only if a �= b and there is exactly one player k for which
bk is a best-response to the pure strategy a−k and a−k = b−k. A strategic game
Γ =

(
N, (Ak), (rk)

)
is weakly acyclic if, given any vertex in its best response

graph there is a directed path to a vertex from which there is no exiting edge (a
sink).

A sink as described in the previous definition corresponds necessarily to a
strict Nash equilibrium. Given a weakly acyclic strategic game Γ , we denote by
L(a) the shortest path from the vertex a to a strict Nash equilibrium in the
best response graph of Γ and by L(Γ ) = maxa∈A L(a). Young [1] showed that
for any weakly acyclic strategic game, adaptive play converges w.p.1 to a strict
Nash equilibrium as long as K ≤ m

L(Γ )+2 .

3 Independent Adaptive Leaning

In this section we describe independent adaptive learning, a variation of adaptive
learning relying on independent learners. This algorithm has an obvious advan-
tage over the original adaptive learning algorithm [1], since it does not require
each player to be able to observe the plays by the other agents. Furthermore, no
a priori knowledge of the payoff function is required.

3.1 Independent Adaptive Learning Process

Let Γ =
(
N, (Ak), (rk)

)
be a repeated game played at discrete instants of time

t = 1, 2, . . .. At each play, each player k = 1, . . . , N chooses an action ak(t) ∈ Ak

and receives a reward rk(t). We are interested in developing a learning algorithm
for independent players, i.e., players that are not able to observe the plays of
the others. Therefore, we consider that all plays and rewards referred henceforth
concern a particular player k in Γ , except if explicitly stated otherwise. We refer
to the pair (a(t), r(t)) as the play (of player k) at time t. The history of plays
up to time t is a set Ht = {(a(1), r(1)), (a(2), r(2)), . . . , (a(t), r(t))}.

Let K and m be two integers 1 ≤ K ≤ m. At each time instant t = 1, 2, . . ., the
player chooses its action a(t) as follows. For t ≤ m, a(t) is chosen randomly from
the corresponding action set Ak; for t ≥ m+1, the player inspects K plays drawn
without replacement from its most recent m plays. Suppose, for definiteness,
that the selected plays corresponded to times t1, . . . , tk. The expected payoff
associated with each action u ∈ Ak is

EP (u) =
∑K

i=1 r(ti)Iu(a(ti))
∑K

i=1 Iu(a(ti))
,
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where Iu(·) is the indicator function for the set {u} with u ∈ Ak.2 Given EP (u)
for all u ∈ Ak, the player now randomly chooses its action from the set

BR =
{

a ∈ Ak | a = arg max
u∈Ak

EP (u)
}

.

If one particular action u ∈ Ak is never played in the selected K plays, then the
expected payoff should be taken as any sufficiently large negative number (we
henceforth take it to be −∞).

3.2 Convergence of the Independent Adaptive Learning Process

In this section we establish the convergence of our method by casting it as a
variation of adaptive play as described in [1].

The main differences between our algorithm and the standard adaptive play
lie on the fact that we do not assume any knowledge of the payoff function or any
observability of the actions of the other players. Instead, we rely on the sampling
process to implicitly provide this information.

Before introducing our main result, we need the following definitions.

Definition 1 (Greedy strategy). An individual strategy σk is greedy with
respect to (w.r.t.) a payoff function r if it assigns probability 1 to the action
a∗ = argmax

a∈Ak

r(a).

Definition 2 (GLIE strategy [16]). An individual strategy σk is greedy in the
limit with infinite exploration (GLIE) if (i) each action is visited infinitely often
and (ii) in the limit, the policy is greedy with respect to some payoff function r
w.p.1.

A well-known example of GLIE policy is Boltzmann exploration:

P [At = a | r] =
er(a)/Tt

∑
u∈A er(u)/Tt

,

where Tt is a temperature parameter that decays at an adequate rate (see [16]
for further details).

Theorem 1. Let Γ =
(
N, (Ak), (rk)

)
be a weakly acyclic N -player game. If

K ≤ m

L(Γ ) + 2
,

then every independent adaptive learner following a GLIE policy will converge
to a best response strategy to the other players’ strategies with probability 1.

2 The indicator function for a set A, IA, takes the value 1 when the argument is in A
and 0 otherwise.
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Proof. To prove our result we make use of two results from [1]. In this paper,
Young showed that in weakly acyclic games, if K ≤ m

L(Γ )+2 , then as the ex-
perimentation probability approaches to zero, the limiting distribution “narrows”
around the Nash equilibria in the game. This implies the convergence of the joint
strategy to one such equilibrium w.p.1. The experimentation probability in [1]
defines the probability of a player choosing non-greedy actions (i.e., making a
“mistake”).

To prove our result, we make use of the results from [1] by first considering
a fixed, positive exploration rate. The exploration rate in our algorithm plays
the role of the “experimentation probability” in [1]. The independent adaptive
learning process described in Subsection 3.1 yields an irreducible and aperiodic
finite-state Markov chain whose state-space consists on the set of all m-long
sequences of joint actions. This means that the sequence of histories provided by
independent adaptive learning converges at an exponential rate to a stationary
distribution. The conclusions of our theorem now follow from the results in [1]
as long as we show that the probability of making “mistakes” in our algorithm
goes to zero at a suitable rate, i.e., slower than the aforementioned Markov chain
converges to stationarity.

In our algorithm, if a particular action u ∈ Ak is never played in the se-
lected K plays, then the associated expected payoff is −∞. This means that,
in our algorithm, “mistakes” can arise either due to the exploration or to the
subestimation of action-values.

Two important observations are now in order. First of all, infinite exploration
ensures that the probability of all players converging to a strategy other than
a Nash equilibrium is 0. On the other hand, our assumption of a GLIE policy
guarantees that the probability of exploration goes to zero as t → ∞, while
always ensuring sufficient exploration. This naturally implies that the proba-
bility of making exploration “mistakes” decreases to zero. Furthermore, it also
implies that Nash equilibria will be sampled with increasing probability—as the
exploration decreases, Nash equilibria will be played more frequently and con-
sequently more frequently sampled, and consequently more frequently played,
and so on. But this finally implies that, as t → ∞, the probability of making
“mistakes” due to sub-evaluation also decreases to zero.

These two remarks lead to the conclusion that the probability of making “mis-
takes” goes to zero at a slower rate than the GLIE policy becomes greedy which,
by construction, is slower than the rate of convergence of the above Markov
chain to stationarity. This allows us to apply the desired result from [1] and the
proof is complete. �	

4 Experimental Results

In this section we present the results of our method for several simple games. In
each game, we applied our algorithm by running 1000 independent Monte-Carlo
trials, each trial consisting of 900 plays of the same game. We used Boltzmann
exploration with decaying temperature factor to ensure sufficient exploration of
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all actions. We present in Figures 3.a), 6.a), 9.a) and 12.a) the average evolution
of the received payoff for each game (solid line) and the corresponding standard
deviation (in dashed line) for each game. We also present in Figures 3.b), 6.b),
9.b) and 12.b) the percentage of trials that the algorithm converged to each joint
strategy in each game.

Prisoner’s dilemma. The prisoner’s dilemma is a well-known game from game
theory whose payoff function is represented in Fig. 1. In this game, two criminal
prisoners are persuaded to confess/rat on the other by being offered immunity.
If none of the prisoners confess, they will be sentenced for a minor felony. If one
of the prisoners confesses and the other remains silent, the one confessesing is
released while the other serves the full sentence. If both prisoners confess, they
do not serve the full sentence, but still remain in jail for a long time.

S R

S 5, 5 -10, 20

R 20, -10 -5, -5

Fig. 1. Payoff for the prisoner’s
dilemma. Each prisoner may opt by
remaining silent (S) or by ratting on
the other prisoner (R)

Fig. 2. Best-response graph for the
prisoner’s dilemma

This game is very interesting from a game theoretic point-of-view. In fact,
both players would be better off by remaining silent, since they would both
serve a short sentence. However, each player profits by confessing, no matter
what the other player does. Therefore, both players will confess and therefore
serve a long sentence. The joint action (R, R) is, therefore, a Nash equilibrium.
This is clear from the best-response graph, depicted in Fig. 2, where it is also
clear that the game is weakly acyclic.

As mentioned, this game has a single Nash equilibrium, consisting of the
pure strategy (R, R). To this joint strategy corresponds a payoff of (−5,−5).
By observing Fig. 3.a) we can see that the average payoff received by each
player converged to −5, indicating that the algorithm converged to the Nash
equilibrium as expected. This is also clearly observable in Fig. 3.b): the algorithm
converged to the joint strategy (R, R) 100% of the 1000 runs.

Diagonal game. We next considered a 2-player, fully cooperative game de-
scribed by the payoff function in Fig. 4. Notice that the diagonal elements cor-
responding to the joint actions (1, 1), (2, 2), (3, 3) and (4, 4) yield higher payoff
than the remaining joint actions, as if rewarding the two players for “agreeing”
upon their individual actions.
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a) Evolution of expected payoff; b) Limit strategies.

Fig. 3. Learning performance in the prisoner’s dilemma

1 2 3 4

1 1 0.75 0.75 0.75

2 0.75 0.9 0.75 0.75

3 0.75 0.75 0.9 0.75

4 0.75 0.75 0.75 1

Fig. 4. Payoff for the fully cooperative, di-
agonal game

Fig. 5. Best-response graphs for the di-
agonal game

This game presents four pure Nash equilibria, corresponding to the diagonal
elements in the payoff matrix (Fig. 4). This motivates the naming of the game as
the “diagonal game”. The four Nash equilibria are evident from the best-response
graph in Fig. 5. Notice, furthermore, that the game is weakly acyclic.

We applied our algorithm to both stances of the game and depicted the results
in Fig. 6.

Notice that the four equilibria do not yield similar payoffs and this will affect
the convergence pattern of the algorithm. We start by noticing in Fig. 6.a) that
the expected payoff for both players converges to 0.975. This value has a precise
interpretation that we provide next.

By close observation of the best-response graph in Fig. 5.b) we notice, for
example, that the equilibrium (1, 1) can be reached from 7 different joint actions.
Out of the 16 possible joint actions, 5 lead to (1, 1) and 2 other lead to (1, 1)
half of the times. This reasoning allows to conclude that we expect (1, 1) to be
the limit point of our algorithm 6/16 = 37.5% of the times. The same reasoning
can be applied to the equilibrium (4, 4). As for the equilibria (2, 2) and (3, 3),
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a) Evolution of expected payoff; b) Limit strategies.

Fig. 6. Learning performance in the diagonal game when ψ = 0.1

the same reasoning leads to the conclusion that each of these equilibria will be
reached 2/16 = 12.5% of the times. These are, indeed, the results depicted in
Fig. 6.b) and further lead to the conclusion that the average expected payoff for
each player is rav = 2 × 0.375× 1 + 2 × 0.125 × 0.9 = 0.975.

3-Player game. We now consider a fully cooperative 3-player game with multi-
ple equilibria introduced in [17]. In this game, 3 players have available 3 possible
actions, α, β and γ. The players are rewarded maximum payoff if all 3 coordi-
nate in the same individual action; they are rewarded a small payoff if all play
different actions. Otherwise, they are penalized with a negative payoff.

αα αβ αγ βα ββ βγ γα γβ γγ

α 10 -20 -20 -20 -20 5 -20 5 -20

β -20 -20 5 -20 10 -20 5 -20 -20

γ -20 5 -20 5 -20 -20 -20 -20 10

Fig. 7. Payoff for the 3-player game from [17]

The game has several Nash equilibria, marked in bold in the best-response
graph in Fig. 5. Clearly, the game is weakly acyclic.

We applied our algorithm to the game. The results are depicted in Fig. 9.
Once again conducting an analysis similar to the one in the previous games,

we expect the algorithm to converge to the optimal equilibria about 25.9% of
the times and to the suboptimal equilibria about 3.7% of the times. The use
of Boltzmann exploration leads to a slight increase in the number of runs con-
verging to the optimal equilibria and consequent decrease in the number of runs
converging to the suboptimal equilibria (Fig. 9.b)). This is also noticeable since
the average payoff per player actually converges to 20 (Fig. 9.a)), which indicates
that each optimal equilibrium is actually reached about 1/3 of the times.
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Fig. 8. Best-response graph for the 3-player game from [17]

a) Evolution of expected payoff; b) Limit strategies.

Fig. 9. Learning performance in the 3-player game from [17]

Cyclic game. Finally, we present a two-player, zero-sum game with no pure
Nash equilibrium. The payoff function for the game is presented in Fig. 10. Since
this game has no pure Nash equilibrium, it cannot be weakly acyclic, as verified
from the best-response graph in Fig. 11. Therefore, it is not expected that our
algorithm converges to an equilibrium, since the algorithm can only converge to
pure strategies (and the equilibrium for this game is a mixed one).3 We remark,
however, that the Nash equilibrium for this game corresponds to an expected
reward of 8 for player 1 and of −8 for player 2.

We applied our algorithm to the game, running 1000 independent Monte-
Carlo runs, each consisting of 900 plays of the game. The results are depicted in
Fig. 9.

Notice in Fig. 12.a) that the average payoff received by player 1 converged
to about 5 (and to −5 for player 2). This means that the algorithm converged

3 The Nash equilibrium for this game consists on the mixed strategy that plays action
1 with a probability 0.8 and action 2 with probability 0.2.
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1 1

1 5 0

2 0 20

Fig. 10. Payoff for a zero-sum game Fig. 11. Best-response cyclic graph

a) Evolution of expected payoff; b) Limit strategies.

Fig. 12. Learning performance in the cyclic game

to the pure strategy (1, 1) as observed in Fig. 12.b). Curiously, this is the pure
strategy “closest” to the actual Nash equilibrium for the game.

5 Conclusions

In this work we generalized adaptive play [1] to situations where actions and
payoffs are not observable. We showed that our algorithm converges with prob-
ability 1 to a (pure) Nash equilibrium if it exists. However, if no (pure) Nash
equilibrium exists, and as seen in the example of the cyclic game, the algo-
rithm may eventually converge to the pure strategy which is “closest” to a mixed
strategy Nash equilibrium for the game. Our algorithm, independent adaptive
learning, proceeds as in standard adaptive play by using incomplete sampling
of finite length history of past actions/payoffs. To handle the lack of action ob-
servability, the algorithm requires infinite exploration to avoid getting “stuck” in
non-equilibrium strategies. We provided a formal proof of convergence and some
experimental results obtained with our algorithm in several games with different
properties. Further experimental results can be found in [18].

We are interested in extending the independent adaptive learning algorithm
(or a variation thereof) to multi-state problems, such as Markov games. We are
also interested in applying the algorithm to real world situations with a large
number of agents with large action repertoires.
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