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Abstract. In this paper, we combine the formal methods from re-
inforcement learning with the paradigm of imitation learning. The
extension of the reinforcement learning framework to integrate the
information provided by an expert (demonstrator) has the important
advantage of allowing a clear decrease of the time necessary to learn
certain robotic tasks. Hence, learning by imitation can be interpreted
as a mechanism for fast skill transfer. Another contribution of this
paper consists in showing that our formalism is able to model dif-
ferent types of imitation-learning that are described in the biological
literature. It thus unifies in the same abstract model what used to be
addressed as separate behavioral patterns. We illustrate the applica-
tion of these methods in simulation and with a real robot.

1 INTRODUCTION
In the early days of behavioral sciences, several processes used by
animals to acquire new skills were often dismissed as “mere imita-
tion”. As the knowledge of animal behavior, psychology and neuro-
physiology evolved, imitation has been promoted and is now consid-
ered a sophisticated cognitive capability that few species are capa-
ble of [1]. This change in the interpretation was accompanied by the
discovery of several phenomena resulting in imitation-like behavior,
i.e., in a repetition of an observed pattern of behavior.

In social learning, a learner uses information provided by an ex-
pert to improve its own learning. For example, if the learner is able
to observe the actions taken by a second subject, it can bias its ex-
ploration of the environment, improve its model of the world or even
mimic parts of the other agent’s behavior. This process, generally
dubbed as imitation, makes cultural transfer of knowledge fast and
reliable—acquired knowledge enables fast learning. Cultural spread-
ing becomes thus possible by a Lamarckian principle, where animals
learn how to act by imitating others and having the same manner-
isms as their peers. Through imitation, new discoveries are learnt by
each individual very efficiently, simply by observation and behavior
matching.

“Real” imitation occurs when a new action is added to the agent’s
repertoire after having seen a demonstration. It is not enough to re-
peat an action after having seen it. In fact, this phenomenon can of-
ten be explained by reinforcement learning (or learning by trial-and-
error). Although some social skill is usually developed when learning
by trial-and-error, there is no real imitation (where new skills are ac-
quired by simple observation). The concept of imitation is far from
clear and led biologists to define several mechanisms to explain dif-
ferent types of imitation-like behaviors.

In this paper, we analyze several such imitation-like behaviors. We
show how each can be modeled using a common formalism. This
formalism borrows the fundamental concepts and methods from the
reinforcement learning framework [2]. By considering different ways
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by which an expert can provide information to the learner, we feature
different types of learning from observation and formalize each of the
aforementioned behaviors in a reinforcement learning (RL) context.

We recall that RL addresses the problem of a decision-maker faced
with a sequential decision problem and using evaluative feedback
as a performance measure. The evaluative feedback provided to the
decision-maker consists of a reinforcement signal that quantitatively
evaluates the immediate performance of the decision-maker. To op-
timally complete the assigned task, the decision-maker must learn
by trial-and-error: only sufficient exploration of its environment and
actions ensure that the task is properly learnt. Therefore, in the stan-
dard RL formalism, the reinforcement signal is a fundamental el-
ement that completely describes the task to be learnt. If the agent
knows how the reinforcement is assigned, it should be able to learn
the task by trial-and-error (given enough time) and the information
from an expert can, at most, speed up the learning process.

In real imitation as considered above, the learner should be able to
acquire a new skill/learn a new task from the observations. However,
and unlike the situation described in the previous paragraph, it gen-
erally should not be able to do this without the information provided
by the expert. Considering everything stated so far, we could argue
that, from a RL perspective, this corresponds to the learning of the
reinforcement function.

Imitation has been proposed as a method to program the com-
plex robotic systems existing today [3, 4, 5]. Programming highly-
complex robots is a hard task per se; if a robot is capable of learn-
ing by observation and imitation, the task of programming it would
be greatly simplified. To the extent of our knowledge, no system-
atic computational model has been proposed to formally describe
imitation-like behaviors. The formalism proposed in this paper aims
at fulfilling such gap. So far, the mainstream of the research in imi-
tation aimed at individually clarifying/modeling several fundamental
mechanisms individually: body correspondence [6, 7], imitation met-
rics [8], view-point correspondence [9] and task representation [10].

In this paper, we propose a formalism to address learning from ob-
servations. In this formalism, several types of information provided
by an expert are integrated in a RL framework in different ways. We
consider different assumptions on the information provided and on
the way this information is integrated in the learning process, and
show that this results in different imitation-like behaviors. It is our
belief that the formal approach in this paper contributes to disam-
biguate several important concepts and clarify several issues arising
in the literature on learning by imitation.

The paper is organized as follows. Section 2 reviews the main con-
cepts in imitation learning. We describe several models of imitation
in biological and artificial systems, as well as some computational
problems arising in the context of imitation. Section 3 describes the
framework of RL and introduces the fundamental notation. We pro-



ceed in Section 4 by analyzing several methods to use expert infor-
mation to speed learning. We show these methods to fall within spe-
cific classes of imitation-like behavior. To do this we describe how
imitation and reinforcement can be combined and describe two sim-
ple methods to achieve this. We illustrate some of the methods in the
paper in Section 5 and conclude the paper in Section 6.

2 IMITATION LEARNING
Several different mechanisms can result in a imitation-like behavior.
One agent may perform an action after having seen it, but the mech-
anisms leading to it may be very different. Even when asking some-
one to imitate a hand movement, the results may vary substantially
depending on the individual in question [11, 12]. From the study of
imitation in animals, several mechanisms were proposed to describe
an “imitative behavior”, [1, 13, 4, 3]:

1. Stimulus Enhancement describes the general tendency to re-
spond more vigorously toward those parts of the environment
within which a conspecific is seen to interact. Seeing what are
the important parts of the environment and which objects might
be useful can speed up learning;

2. Contextual Learning describes the situation when an action is
not learned, but the perception of a new object property can pro-
duce the desire to act upon it. If, for example, an animal sees some-
one throwing a coconut, it will learn the possibility of throwing it.
In the context of our work, contextual imitation would amount to
learning to employ an action, already known, in different circum-
stances.

3. Response facilitation is described in [1] as “a kind of social ef-
fect that selectively enhances responses: watching a conspecific
performing an act, often resulting in a reward, increases the prob-
ability of an animal doing the same.” Large flocks of birds fly
in perfect synchronization. They are not imitating each other, but
simply doing the same to protect themselves against predators.

4. Emulation can also lead to a behavioral match. Observing an ac-
tion and the corresponding result might bring a desire to obtain
the same goal. Learning that a coconut can be smashed to reach
the inside will give the desire to eat the inside and thus producing
the same behavior.

Although the mechanisms just described produce imitative behav-
ior, they do not exactly correspond to imitation learning, in the sense
that no “new actions” are learned from scratch or added to the exis-
tent repertoire. On the other hand, there is a second set of processes
leading to imitative behavior where learning of new actions does ac-
tually occur. This is called production learning [13] and, as it is the
most-powerful way of imitation, the “true-imitation” [3].

Byrne distinguishes two cases of production learning, namely
action-level and program-level learning [13]:

• Action-level learning is defined as: “The indiscriminate copying
of the actions of the teacher without mapping them onto more
abstract motor representation.” [3]. This is a perfect copy of the
motions, if the kinematics of the systems are the same, even the
joint level trajectories are the same.

• Program-level learning defined for the cases where not only the
superficial motion is copied but when a broader description of the
sequences, goals and the hierarchical structure of the behavior is
inferred by the learner [14].

From the examples above we can see that many situations dubbed
as imitation do not involve any actual learning, but only simultane-
ous/similar action. Response facilitation is just the equal answer that

similar agents give when they are at the same state. Emulation and
contextual learning can be explained as an improvement of the world
model. The result of some action, or its relevant use in a given situa-
tion is added to the possible actions. In stimulus enhancement some
task learning occurs, but the action is learned by trial-and-error, the
demonstration only providing partial knowledge. In imitation, we ex-
pect the agent to learn how to complete the task or even the task itself.

2.1 Some implementation issues
Imitation cannot be reduced to supervised learning, where the agent
is given the input and correct output. In imitation, the agent is given
a set of observations of the environment and corresponding adequate
actions. It must then translate this information in terms of its own
body. This is the first difficulty in imitation: the observation is made
from a different point-of-view. The different actions performed then
must be recognized and mapped to the agent’s different capabilities.
Finally, the agent must infer the important parts of the demonstra-
tion. In imitation, all these problems must be carefully addressed,
this being the reason why imitation is considered a complex cogni-
tive task. We now discuss each of these three steps in detail.

Due to the problem of “seeing the world from another’s view-
point”, the observed actions must be translated into the referen-
tial frame of the learner due to the different perceptual viewpoints,
i.e., the learner must perform a “mental rotation” to place the demon-
strator’s body (allo-image) in correspondence with the learner’s own
body (ego-image) [15, 9, 16].

Furthermore, when considering the problem of learning by imita-
tion there is some correspondence assumed between the body of the
demonstrator and that of the imitator. The correspondence problem
is precisely defined as the mapping between the actions, states and
effects of the demonstrator and those of the imitator. It is particularly
relevant if the actions are performed by a specific body and should be
replicated by a different body. Even when considering similar bodies,
contextual knowledge or training may imply that the demonstrator
and the imitator cannot use one same object in the same ways. And if
this is not the case, there are always small differences in kinematics,
size, dynamics or context that require the correspondence problem to
be solved. This problem can be addressed using different methodolo-
gies. Examples include algebraic approaches [17], trajectory balance
correction [18] and matching the effects of the actions [7].

Finally, it is necessary to evaluate the performance of the imitator.
In other words, an agent needs a metric that, in a sense, allows it to
determine if the imitation was successful or not. And, as expected,
different metrics can will lead to different results. These imitation
metrics evaluate how well the imitator was able to grasp underlying
goal of the demonstrated task. These metrics can be selected using an
algebraic formulation [8], by optimizing the learnt trajectories [19]
or by considering the visual process involved [9].

Figure 1 combines the previous elements in an illustrative archi-
tecture that summarizes the relation between these elements of imi-
tation learning [5]. In this paper we do not address the fundamental
problems of view-point transformations or recognition. Instead, we
assume that the learner receives the processed output of the blocks
computing the VPT and performing the recognition, and focus in the
problem of learning.

As will soon become apparent, we provide a unified framework
to address imitation learning and reinforcement learning. We show
that, in this setting, there is an imitation metric that arises naturally
from the formulation of the problem of imitation. Furthermore, we
describe several situations where such metric does not arise naturally
from the problem formulation. We identify in each such situation
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Figure 1. Architecture for the imitator.

a particular instance of imitation-like behavior, where the learning
agent “appears” to imitate the demonstrator but where no actual imi-
tation takes place.

3 REINFORCEMENT LEARNING

The general purpose of RL is to find a “good” mapping that assigns
“perceptions” to “actions”. Simply put, this mapping determines how
a decision-maker reacts in each situation it encounters, and is com-
monly known as a policy. The use of evaluative feedback, by means
of a reinforcement signal, allows the decision-maker to gradually
grasp the underlying purpose of the task it must complete while op-
timizing the way of completing it.

In this section we describe Markov decision processes, the stan-
dard framework used to address RL problems. We also review some
solution methods that we later employ in the context of imitation.

3.1 Markov decision processes

Let {Xt} denote a controlled Markov chain, where the parameter t
is the discrete time, and Xt takes values in a finite set X , known as
the state-space.

The distribution of each r.v. Xt+1 is conditionally dependent on
the past history Ft of the process according to the probabilities

P [Xt+1 = y | Ft] = P [Xt+1 = y | Xt = x, At = a] =

= Pa(x, y).

We note that the transition kernel P depends at each time instant t
on a parameter At, which takes values in a finite set A. This param-
eter provides a decision-maker with a mechanism to “control” the
trajectories of the chain by influencing the corresponding transition
probabilities. We generally refer to the sequence {At} as the control
process; we refer to At as the action at time instant t and toA as the
action-set.

Every time a transition from a state x ∈ X to a state y ∈ X occurs
under a particular action a ∈ A, the decision-maker is granted a
numerical reinforcement r(x, a, y). This reinforcement provides the
evaluative feedback that the decision-maker must use to learn the
desired task. The decision-maker must determine the control process
{At} maximizing the expected total discounted reward, as given by
the functional

J({At} , x) = E

"
∞X

t=0

γtRt | X0 = x

#
,

where we denoted by Rt the reinforcement received at time t, given
by r(Xt, At, Xt+1). Throughout the paper, we admit that the re-
wards are bounded, i.e., , |r(x, a, y)| ≤ R for some constant R.
Also, and to simplify the discussion, we admit r to be constant on
the second and third parameters. The parameter 0 < γ < 1 is a
discount factor.

A Markov decision process (MDP) is a tuple (X,A, P, r, γ),
where X is the state-space, A is the action-space, P represents the
transition probabilities for the controlled chain and r is the reinforce-
ment function.

3.2 Dynamic programming and stochastic
approximation

We define a policy as being a state-dependent decision-rule, and de-
note it as a mapping δt : X × A −→ [0, 1] assigning a probability
δt(x, a) to each state action pair (x, a) ∈ X ×A. The value δt(x, a)
represents the probability of At = a when Xt = x. A policy δ in-
dependent of t is dubbed as stationary, and as deterministic if for
each x ∈ X there is an a ∈ A such that δt(x, a) = 1. In the latter
case, we abusively denote by δt(x) the action determined by δt when
Xt = x.

The value function associated with a policy δt is defined as a map-
ping V δt : X −→ R defined for each state x ∈ X as

V δt(x) = J({At} , x),

where the control process {At} is generated from {Xt} according to
δt. Given an MDP (X,A, P, r, γ), there is at least one deterministic,
stationary policy δ∗ such that

V δ∗(x) ≥ V δt(x),

for any policy δt and any state x ∈ X . This policy can, in turn, be
obtained from V δ∗ as

δ∗(x) = arg max
a∈A

h
r(x) + γ

X
y∈X

Pa(x, y)V δ∗(y)
i
.

Any such policy is optimal and the corresponding value function V δ∗

is simply denoted by V ∗. Clearly, V ∗ verifies the recursive relation

V ∗(x) = max
a∈A

h
r(x) + γ

X
y∈X

Pa(x, y)V ∗(y)
i
,

known as the Bellman optimality equation. Notice that V ∗(x) is the
expected total discounted reward along a trajectory of the Markov
chain starting at state x obtained by following the optimal policy δ∗.

From V ∗ we define a function Q∗ : X ×A −→ R as

Q∗(x, a) = r(x) + γ
X
y∈X

Pa(x, y)V ∗(y).

The value Q∗(x, a) is the expected total discounted reward along a
trajectory of the chain verifying X0 = x and A0 = a, obtained by
following the optimal policy for t ≥ 1.

Summarizing, we have the following relations

V ∗(x) = max
a∈A

Q∗(x, a); (1a)

Q∗(x, a) = r(x) + γ
X
y∈X

Pa(x, y)max
b∈A

Q∗(y, b); (1b)

δ∗(x) = arg max
a∈A

Q∗(x, a). (1c)



Now given any functions v : X −→ R and q : X ×A −→ R, we
consider the operators

(Tv)(x) = max
a∈A

h
r(x) + γ

X
y∈X

Pa(x, y)v(y)
i

and

(Hq)(x, a) = r(x) + γ
X
y∈X

Pa(x, y)max
b∈A

q(y, b).

It is straightforward to see that V ∗ and Q∗ are fixed points of the
operators T and H. Each of these operators is a contraction in a
corresponding norm and thus a simple fixed-point iteration can be
used to determine V ∗ and Q∗.

The use of either T or H to determine V ∗ or Q∗ by fixed-point
iteration is a process known as value iteration. It is a dynamic pro-
gramming approach that is often used to determine the function V ∗

and Q∗ from which the optimal policy δ∗ can be computed.
When this is not the case, i.e., when P and r are unknown, many

methods have been proposed that asymptotically converge to the de-
sired functions [20, 2]. In this paper, we use use one of the most
studied methods in the RL literature: the Q-learning algorithm [21].
This method uses sample trajectories of the Markov process, {xt},
control process, {at} and corresponding rewards {rt} to estimate
the function Q∗. These estimates are updated according to the Q-
learning update

Qt+1(xt, at) = (1− αt(xt, at))Qt(xt, at)+

+ αt(xt, at)
ˆ
rt + γ max

b∈A
Qt(xt+1, b)

˜
.

(2)

This algorithm will converge to Q∗ w.p.1 as long asP
t αt(x, a) = ∞ and

P
t α2

t (x, a) < ∞ for every (x, a) ∈ X×A.
This requires in particular that every state-action pair be infinitely of-
ten (there is sufficient exploration of the environment and the agent’s
actions).

4 LEARNING PARADIGMS USING EXPERT
INFORMATION

In the previous sections we described two learning paradigms: learn-
ing by imitation and learning by reinforcement. In this section we
move towards a combined learning framework, the learning by ob-
servation and reinforcement (LOR) framework. To this purpose, we
consider a learning agent that must learn how to perform a sequen-
tial task using some prior knowledge and information provided by an
expert.

The formalism considered herein borrows the fundamental ideas
from the reinforcement learning framework described in the previous
section, thus providing a unified framework to address both classes of
learning processes. The fundamental assumptions usually considered
in the reinforcement learning framework are:

• The task to be learnt can be described as a mapping from the set of
states of the environment to the set of possible actions (a policy);

• The environment is stationary.

The first assumption simply states that in the same state of the en-
vironment the agent should always perform the same action. We re-
mark that this assumption bears yet another important implication.
If, as stated, the task to be accomplished can be fully described using
a policy, then there is a reward function such that the policy to be
learnt is the optimal policy with respect to this reward function, in
the sense described in Section 3.

The second assumption above simply means that the policy used to
fulfill the task should not change with time (the environment always
responds to the agent’s actions in the same way).

In what follows, we will consider two fundamental situations:

(i) The imitator knows the task to be learnt, but does not know
how to perform this task;

(ii) The imitator does not know the task to be learnt.

From everything stated so far, it should be clear that, in terms of
our formalism, the situation in (i) simply means that there is a previ-
ously defined reward function, known by the agent (since the reward
function defines the task). Notice that if the agent is aware of this
function, it can learn to perform the task by trial-and-error, given
sufficient time. Clearly, the situation in (ii) means that there is no re-
ward function defined a priori. This, of course, implies that the agent
will not be able to learn any task without any further information.2

We analyze how different types of information provided by an ex-
pert can be integrated in learning the desired task. As will soon be-
come apparent, models for the imitation-like behaviors described in
Section 2 arise naturally in the LOR framework. We also show that,
in the more complex scenario of an unknown task, it is possible to
provide a natural interpretation for the used algorithm in terms of
imitation metrics. The first case, where the agent does know the task,
does not correspond to “real” imitation behavior as defined in Sec-
tion 2. Only in the second situation, where the task is not defined
beforehand, can we speak about true imitation. We further comment
on this issue at the end of the section.

We consider each of the two situations (i) and (ii) in Subsec-
tions 4.1 and 4.2, respectively.

4.1 Known task
We consider that the interaction of the learning agent and the envi-
ronment can be described as a controlled Markov chain, as in Sec-
tion 3. This means that, at each time t, the state of the environment
will move from a state Xt = x to a state Xt+1 = y depending on
the action At of the agent and according to the transition probabili-
ties Pa(x, y). We suppose that an expert provides the learning agent
with some information on how the task can be completed. We refer to
such information generally as a demonstration and analyze how can
this information be used in the learning process. We consider four
distinct cases:

(i) The demonstration consists of a sequence of states,

H = {x1, . . . , xN} ,

obtained by following the optimal policy;
(ii) The demonstration consists of a sequence of state-actions pairs,

H = {(x1, a1), . . . , (xN , aN )} ,

“hinting” on which should be the optimal action ai at each state
xi visited;

(iii) The demonstration consists of a sequence of transition triplets,

H = {(x1, a1, y1), . . . , (xN , aN , yN )} ,

providing the imitator with information on the behavior of the
environment;

2 We could argue that the situation in (ii) means that the agent does not know
the reward function, but that the latter is defined. We do not adopt such po-
sition for the simple reason that, if a reward function is defined, the agent
can still learn by trial-and-error and, therefore, there is no significative dif-
ference from (i).



(iv) The demonstration consists of a sequence of transition-reward
tuples,

H = {(x1, a1, r1, y1), . . . , (xN , aN , rN , yN )} ,

providing the imitator with information on the behavior of the
environment and on how the task should be completed.

First of all, we remark that, since we assume knowledge of r, (iii)
and (iv) are redundant. Nevertheless, we will consider how to address
the two situations distinctly, noting that in (iv) allows to address sit-
uations in which r is unknown.

We must further detail the idea behind each of the previous classes
of demonstrations. The first situation, (i), addresses situations in
which the learning agent can not observe/recognize the actions of
the demonstrator but only their effect in the environment. This infor-
mation will show the agent how the state of the environment should
evolve when the optimal policy is implemented. A sequence as de-
scribed in (ii) illustrates how the task can be completed. Each pair
(xi, ai) is related through some deterministic policy δ that is “close”
to optimal. Sequences as those described in (iii) and (iv) illustrate the
dynamics of the environment in terms of transitions and transitions-
rewards, respectively. Unlike the sequences described in (ii), it is not
assumed that xi and ai in each tuple (xi, ai, yi) or (xi, ai, ri, yi) are
related by some policy.3

Another important aspect is that, at this stage, we are not con-
cerned with the particular way by which the sequences H in (ii)
through (iv) are obtained. Consider for example the situation in (ii).
It may occur that the demonstrator illustrates how the task is com-
pleted by demonstrating the action to be chosen in an arbitrary set of
states {x1, . . . , xN}. Or, it may happen that the sequence of states
{x1, . . . , xN} is actually a sample path of the process obtained with
the control sequence {a1, . . . , aN−1}.

We also remark that, in all 3 cases listed above, we assume that
the imitator is able to perceive the information in the sequences H
unambiguously. We could admit partial observability, meaning that
the imitator was able to observe the states, actions and/or rewards
in the sequences H only up to some degree of accuracy. This would
imply that the imitator would have to estimate what the actual state,
action and/or reward would have been. This, of course, would be
the actual case in practical situations. Nevertheless, consideration of
partial observability adds no useful insight to our formalization of
the imitation problem and significantly complicates the presentation.

The four methods presented below all provide an initial estimate
Q0 for Q∗ that integrates the information provided by the demonstra-
tion. We will see that this informed initialization brings a significant
improvement in the learning performance of the agent.

Method 4.1.1: Sequence of states

Consider a sequence of states

H = {x0, . . . , xN} ,

obtained according to the optimal policy. As stated, this first sce-
nario comprises situations where the learning agent is not able to ob-
serve/recognize the actions performed by the expert. Nevertheless,
the sequence of states H provides the learning agent with an idea on
how the environment evolves “under” the optimal policy.

3 We make this distinction as each of the sequences described in (i) through
(iv) provides the imitator with different information, to be used in different
ways. This is not limiting in any way, as discussed below.

Therefore, if the transition model is known, the agent can compute

Q0(x, a) = r(x) + γ
X
y∈X

Pa(x, y)V ∗(y),

where V ∗ is computed as V ∗ = (I − γP∗)−1r. The matrix I de-
notes the identity and the transition matrix P∗ represents the transi-
tion model for the optimal policy, estimated from H as

P∗(x, y) =
N(x, y)P

z∈X N(x, z)
,

where N(x, y) denotes the number of times that a transition from x
to y occurred in H. This method is similar to that proposed in [22].

Method 4.1.2: Sequence of state-action pairs

Consider a sequence of state-action pairs

H = {(x1, a1), . . . , (xN , aN )} .

Each demonstrated pair (xi, ai) provides significant information on
the optimal policy at xi. And even if the policy partially defined by
δ(xi) = ai is not optimal, it is expectable that it is “close” to optimal.
It is therefore reasonable that the imitator uses δ as an initial policy
to perform the task. And, as it acquires further experience on the task,
it should be able to improve from this initial policy, if there is room
for such improvement. To incorporate this information in the initial
estimate for Q∗, we set Q0(xi, ai) = 1 for i = 1, . . . , N and 0
otherwise.

Method 4.1.3: Sequence of transition triplets

We now consider a sequence of transition triplets

H = {(x1, a1, y1), . . . , (xN , aN , yN )} .

As mentioned above, this sequence provides the imitator with in-
formation on the behavior of the environment. Clearly this is only
useful if the transition probabilities are not known a priori. If this is
the case, the information provided by the demonstrator can be used
to improve the model of the environment by setting

P̂a(x, y) =
N(x, a, y)P

z∈X N(x, a, z)
,

where N(x, a, y) denotes the number of times that the triplet
(x, a, y) was observed in H. This estimated transition model P̂ with
the function r can be used to perform value iteration and obtain an
initial estimate Q0 for the learning algorithm.

Method 4.1.4: Sequence of transition-reward tuples

Finally, we consider a sequence of transition-reward tuples

H = {(x1, a1, r1, y1), . . . , (xN , aN , rN , yN )} .

This sequence provides the imitator with information on the behavior
of the environment and on the task. This means that the tuples in H
can be used to perform N iterations of Q-learning using (2). The
resulting Q-function provides the initial estimate Q0 for the learning
algorithm.



4.2 Unknown task
In this subsection, we use the exact same formulation considered in
Subsection 4.1 above, but suppose that no reward mechanism is de-
fined. This means that the imitator is no longer able to learn the task
by trial-and-error if no demonstration is available.

However, if a demonstrator provides the imitator with some infor-
mation on how the task can be completed, the imitator can build its
own reward function and use it to learn how to perform the task. We
also refer to such information generally as a demonstration.

Unlike in the previous situation, we only consider two scenarios:
We consider four distinct cases.

(i) The demonstration consists of a sequence of states,

H = {x1, . . . , xN} .

(ii) The demonstration consists of a sequence of transition triplets,

H = {(x1, a1, y1), . . . , (xN , aN , yN )} ,

providing the imitator with information on the behavior of the
environment.

Notice that, since there is no reward function defined, it is not pos-
sible to consider the situation where transition-reward tuples are ob-
served. Also, and unlike Subsection 4.1, we now assume that the
transition triplets in H considered in (ii) are obtained using the pol-
icy to be learnt. Therefore, (ii) includes both (ii) and (iii) from the
previous subsection.

Method 4.2.1: Sequence of states

Consider a sequence of states

H = {x0, . . . , xN} ,

obtained according to the optimal policy. As in Subsection 4.1, this
scenario comprises situations where the learning agent is not able to
observe/recognize the actions performed by the expert.

We interpret the sequence of states in H as providing the learner
with information on the goal of the task. In particular, we consider
that H represents a possible trajectory to a goal state. Therefore,
the learner will memorize the last state visited, xN , as the goal state
and build a simple reinforcement function defining the task “reach
the goal state as fast as possible”. An example of one such reward
function is

r(x) =

(
+10 if x = xN ;

−1 otherwise.

The agent can now apply any preferred method to determine the
optimal policy. For example, it can use value iteration if P is known,
or Q-learning otherwise. The learner will thus learn a policy that will
partially replicate the demonstration observed.

Method 4.2.2: Sequence of transition triplets

We now consider a sequence of transition triplets

H = {(x1, a1, y1), . . . , (xN , aN , yN )}

obtained using the “optimal policy”. As in Subsection 4.1, this se-
quence can be used to improve the model of the environment. This
model of the environment can, in turn, be used to determine the
reward function that best translates the policy partially defined by
δ(xi) = ai, i = 1, . . . , N . The approach considered here differs

from that used in Method 4.2.1 in that the reward function is no
longer built by considering only one final state. Instead, the learn-
ing agent will use the whole demonstration and apply inverse rein-
forcement learning to build the reward function [23]. We will show
that this procedure is fundamentally different from the previous ones,
and corresponds to “real imitation” in the sense of Section 2.

4.3 Classification of the learning paradigms

So far in this section we formalized several different methods by
which an agent can use the information provided by an expert in
learning how to accomplish a task. However, as discussed in Sec-
tion 2, there are several learning paradigms that do exhibit imitative
behavior but which cannot be truly classified as “imitation”. And, as
we show in the continuation, most of the methods described above
actually fall in one of the following categories:

• Stimulus enhancement;
• Contextual learning;
• Response facilitation;
• Emulation.

We start with the Method 4.1.1. In this method, the learning agent
seeks to replicate the effect of the actions of the demonstrator. This
will actually lead to an initial replication of the demonstrator’s policy,
but the process by which this behavioral match is attained is emula-
tion.

In Method 4.1.2, the imitator uses the demonstration to bias its
learning strategy. Therefore, this method is actually a stimulus en-
hancement mechanism: the imitator observes some actions that can
be useful for the task and uses this information to speed learning.

In Method 4.1.3, the imitator uses the demonstration to improve
its model of the world. This means that the imitator gains further
knowledge on what the consequences of some of its actions may be.
We can classify this as a subtle form of contextual learning.

A similar thing occurs in Method 4.1.4. In this method, however,
the imitator further observes the rewards obtained by the imitator. It
realizes not only the consequences of some actions but also on how
these actions contribute to complete the task. This use of the reward
information allows us to realize that Method 3 combines contextual
learning with response facilitation.

Notice that, in all these methods, the agent already knows the task
to be learnt. This means that, with enough time, the agent could
learn the task without any help from a demonstrator. Furthermore,
independently of the policy used in the demonstration, the agent
will eventually learn the correct policy, completely disregarding the
demonstration if necessary. This means that the demonstration only
provides a means for the agent to speed up its own learning process.
Therefore, it is not surprising that all these situations do not corre-
spond to “true-imitation” behaviors.

Moving to the the methods in Subsection 4.2, we start by noticing
that, in Method 4.2.1 the agent seeks to replicate the final effect of the
actions of the demonstrator. In fact, in this method, the agent focuses
all its learning in replicating the effect observed in the demonstration
(in terms of final state), displaying a flagrant example of emulation.

On the other hand, Method 4.2.2 seeks to extrapolate the task
behind the actions of the demonstrator. From this information, the
agent builds a reward function that will eventually lead to a repli-
cation of the demonstrator’s policy. However, the actual method for
computing this reward function (and, thus, realizing the task to be
learnt) provides important insights into the problem of imitation, that
we discuss next.



4.4 Inverse reinforcement learning and imitation
metrics

As argued in Section 2, “true” imitation will occur if a broad de-
scription of the action sequences, goals and hierarchical structure of
the desired behavior is inferred by the learner. As we have seen, in
the RL formalism, the goals and structure of the desired behavior
are “encoded” in the reward function. Therefore, learning the reward
function and using it to determine the optimal policy would fit the
above description of true imitation.

Notice that we consider Method 4.2.1 to be emulation because two
completely different sequences ending in a common final state will
lead the learning agent to infer the exact same reward function. This
means that, as stated in the previous subsection, this method seeks to
replicate the effect of the actions of the demonstrator rather than to
extrapolate the task behind the actions of the demonstrator.

On the other hand, Method 4.2.2 does seek to extrapolate this in-
formation from the demonstration. To better realize how this method
operates, we provide a brief description of its working [23].

Given the model of the environment (namely the transition prob-
abilities in P), the inverse reinforcement learning method used
(dubbed Bayesian inverse reinforcement learning—BIRL) searches
the space of possible reward functions. To this purpose, the method
considers a fine discretization of the referred space of reward func-
tions. Then, given any initial reward function, the method evaluates
the optimal Q-function, Q∗, for this reward function and evaluates
the likelihood of the demonstrated policy being optimal given Q∗.
This likelihood also takes into consideration a numerical parameter
describing the confidence on the optimality of the demonstrated pol-
icy. The method will thus output the most likely reward given the
demonstrated policy (obtained from H) and the confidence parame-
ter.

We emphasize several important aspects of this approach. First of
all, this method considers the demonstration as a whole, instead of
focusing on particular aspects. Therefore, the reward thus determined
will more accurately the task “behind” the demonstration. On the
other hand, the likelihood function used to compare different reward
functions as well as the confidence parameter naturally provide an
imitation metric for the problem. The inclusion of the confidence
parameter is an important aspect that allows the agent to realize how
strict it should follow the provided demonstration. A low confidence
parameter will result in a learnt policy significatively more different
from the demonstrated policy than a high confidence parameter.

Also notice that considering imitation metrics makes no sense in
the other methods. In the methods in Subsection 4.1 the demonstra-
tion is only used to speed the learning. The agent is not trying to
replicate the demonstration but to optimize its policy with respect
to the pre-defined rewards. In Method 4.2.1, on the other hand, the
agent is simply trying to reach the final state observed in the demon-
stration. Once again, is not trying to replicate the demonstration but
to optimize the policy leading it to this goal state.

The reward function thus constructed will provide adequate eval-
uative feedback on the task and the imitator can use this evaluative
feedback to optimize its own policy. We emphasize that, without the
demonstration, the imitator has no knowledge on the task. The re-
ward function built from the demonstration is, therefore, new knowl-
edge that describes the task at hand and allows the imitator to learn
how to perform it in an optimal fashion.

4.5 Discussion
With the methods above we conclude the presentation of the LOR
framework. Within this framework, we model an agent’s environ-
ment as a controlled Markov chain {Xt}. The demonstration pro-
vided by an expert is, in turn, described as a sequence H which
can take various forms, depending on the information provided. The
formalism considered herein borrows fundamental ideas from rein-
forcement learning and provides a unified framework to address both
classes of learning processes.

We notice that the MDP model considered in this paper is the sim-
plest model used in reinforcement learning. We are interested in es-
tablishing a unified framework to address both learning by imitation
and reinforcement and thus focus on this simpler model for the sake
of clarity. In Section 6 we briefly comment on how the fundamen-
tal framework considered herein can be extended to accommodate
richer RL models (such as POMDPs).

As argued in Section 2, imitation cannot be reduced to supervised
learning and, therefore, the framework presented here should not be
seen as simple a combination of supervised learning and reinforce-
ment learning.4 Instead, it should be seen as a formalism to describe
learning processes in which imitation and reinforcement learning can
be properly modeled.

It is possible to find other works in the literature that combine
learning by imitation and reinforcement. In [22], imitation arises im-
plicitly in non-interactive multiagent scenarios. In it, a learning agent
uses the trajectories observed from other agents to speed the learn-
ing of its individual task (which is generally independent of that of
the others). In yet another example, [25], a learning method is pro-
posed that learns a reinforcement function and dynamic model from
the demonstration of an expert (human executer). This is then com-
bined with a model-free, task-level direct learner to compensate for
modeling errors.

Our work is fundamentally different from those considered above
in that our aim is to understand how can the problem of imitation be
modeled and how can imitative-like behaviors be distinguished with
a formal perspective. Nevertheless, several methods described in our
paper can be seen as simplified versions of the methods described in
those papers.

Also, as argued in Section 2, we considered that in order for
the learning mechanism to be properly classified as imitation, it
should be able to realize the task from the demonstration. However,
it should be flexible enough to feature two possible behaviors: to
replicate the exact behavior of the demonstrator or, instead, to per-
ceive the purpose of the task and, eventually, optimize beyond what-
ever it observed. As discussed in the previous subsection, the use of
Method 4.2.2 verifies all these requisites. On the other hand, each
of the remaining methods exhibits one of the above features, not all.
This is the reason why we classified them as imitation-like.

Finally, we remark that the classical inverse reinforcement learn-
ing algorithms [26, 27] also determine a reward function given a pol-
icy. The difference from these methods to the one used here is that
BIRL allows the policy to be only partially specified and suboptimal.
This is an important advantage in the problems considered herein.

5 EXPERIMENTS
We conducted several simple experiments to evaluate the perfor-
mance of proposed methods against that of simple trial-and-error.
We evaluated each of the methods described in Section 4.
4 Such approach is adopted, for example, in [24], where a supervisor is com-

bined with an actor-critic learning architecture.



The task considered is a simple recycling game, where a robot
must separate the objects in front of him according to its shape
(Fig. 2). In front of the robot are two slots (Left and Right) where
3 types of objects can be placed: Large Ball, Small Ball and Box.
The boxes should be dropped in the corresponding container and the
small balls should be kicked out of the table. The large balls should
be touched upon. Every time a large ball is touched, all objects are
removed from the table.

Kick the balls
out of the table

Drop the boxes
in the pile

Touch the large
ball

Robot

Figure 2. Simple recycling game.

The robot has, therefore, 6 possible actions: Touch Left (TL),
Touch Right (TR), Kick Left (KL), Kick Right (KR), Grasp Left
(GL) and Grasp Right (GR). We notice that, if the robot kicks a ball
on the right while an object is lying on the left, the ball will remain
in the same spot. The robot receives a reward of +10 every time the
table is empty and −1 every other time.

The correct policy for this game is to touch the large ball, if there
is any, or get rid of the object on the left and then of the object on
the right (there are some situations where the order is not important).
Every time the table is emptied, the game is restarted.

We tested the performance of the 4 Methods in Subsection 4.1
when the optimal policy is demonstrated and a suboptimal policy is
demonstrated. We compared the performance of an agent using the
information provided by the demonstration with that of an agent that
has no previous information on the task. In all situations we allowed
both agents to learn for 200 time steps using an ε-greedy policy with
decaying ε.

Table 1 provides the percentage of time (out of the 200 time steps)
that the agents are able to reach the goal state (empty table). For the
sake of comparison, we also provide the performance of a “pure”
reinforcement learner.

Table 1. Results obtained with Methods 4.1.1 through 4.1.4 using optimal
and suboptimal demonstrations.

Optimal Suboptimal

Pure RL 34.6 % 32.4 %

Method 4.1.1 41.5 % 40.5 %

Method 4.1.2 41.5 % 37.5 %

Method 4.1.3 41.5 % 39.0 %

Method 4.1.4 42.0 % 41.0 %

From Table 1 it is evident that the performance of the learning
algorithm is improved when considering a demonstration, since the
agents were able to reach the goal state (and thus complete the task)
more often. To have a clearer understanding of how this translates in
terms of the learning process, we present in Figures 3 through 6 the
total reward obtained during learning.
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Figure 3. Total reward obtained with Method 4.1.1 over the time-frame of
200 steps when the demonstrator follows an optimal policy.
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Figure 4. Total reward obtained with Method 4.1.2 over the time-frame of
200 steps when the demonstrator follows an optimal policy.
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Figure 5. Total reward obtained with Method 4.1.3 over the time-frame of
200 steps when the demonstrator follows an optimal policy.
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Figure 6. Total reward obtained with Method 4.1.4 over the time-frame of
200 steps when the demonstrator follows an optimal policy.

In the plots, the slope of the performance curve indicates how good
is the learnt policy. It is clear that, in all methods, the provided in-
formation gives the learning agent a significative advantage: in the
beginning of the learning process, the “greedy” action for the agents
that were provided a demonstration is much more informed than that
of the pure RL learner. This means that the demonstration provides
the learner with a knowledge boost by improving the estimative of
the optimal Q-function and thus speeding up the learning.

Notice that, in all these methods, the demonstration provides only
informed initial estimates for Q∗, thus improving the initial perfor-
mance of the agent. However, since this initial estimate is then prop-
erly adjusted by the learning algorithm, the sub-optimality of the
demonstrated policy does not affect the performance of the learner.

In a second set of experiments we tested Method 4.2.1 from Sub-
section 4.2. To evaluate the performance of the method, we explicitly
observed the learnt policy when the demonstrated policy is optimal
and when it is not. The results are summarized in Table 2. We de-
noted by 0 the empty slot, by B the large ball, by c the cube and by
b the small ball.

Notice that both learnt strategies are optimal. This is due to the fact
that, in considering the same final state, the reward function obtained
by Method 4.2.1 is the same independently of the actual policy used



Table 2. Learnt policies with Method 4.2.1 using optimal and suboptimal
demonstrations.

Optimal Suboptimal

(0, 0) TL TL
(0, B) TR TR
(0, c) GR GR
(0, b) KR KR
(B, 0) TL TL
(B, B) TR TL
(B, c) TL TL
(B, b) TL TL
(c, 0) GL GL
(c, B) TR TR
(c, c) GR GR
(c, b) GL GL
(b, 0) KL KL
(b, B) TR TR
(b, c) GR KL
(b, b) KL KL

to demonstrate. And, in this particular case, it matches exactly the
reward function considered in the previous examples, thus giving rise
to the same policy.

Finally, we tested Method 4.2.2 from Subsection 4.2. As in the
previous experiment, we evaluate the performance of the method by
explicitly observing the learnt policy when the demonstrated policy
is optimal and when it is not. The results are summarized in Ta-
ble 3. In the third column we also present the results obtained with
Method 4.2.2 using an optimal policy, but where the model is also
estimated from the demonstration. The table elements in bold denote
“suboptimal” actions.

Table 3. Learnt policies with Method 4.2.2 using optimal and suboptimal
demonstrations.

Optimal Suboptimal No Model

(0, 0) TL TL TL
(0, B) TR TL TL
(0, c) GR TR GR
(0, b) KR KR KR
(B, 0) TL KL TL
(B, B) TR GL TL
(B, c) TL TR TL
(B, b) TL TR TR
(c, 0) GL TL GL
(c, B) TR GL TL
(c, c) GR GR TR
(c, b) GL KR KL
(b, 0) KL KL TR
(b, B) TR KL KL
(b, c) GR TL TL
(b, b) KL TR TR

We emphasize the policy obtained with Method 4.2.2 when the
demonstrated policy is suboptimal (and the agent has little confi-
dence on the observed policy). Recall that this method determines
a likely reward function for which demonstrated policy, we expect
the performance of this method to be affected by the sub-optimality
of the demonstrated policy. Notice that the policy learnt from a sub-
optimal demonstration is even worse than that learnt in the absence
of a model with an optimal demonstration (third column of Table 3).

To conclude this section, we present the images obtained by ex-
perimenting Method 4.2.1 in a real robot. The robot is capable of
recognizing the actions Grasp, Touch and Kick as well as the ob-
jects on the table (to details refer to [7]). Figure 7 presents the robot
following the task it learned after having observed it.

Figure 7. Robot following the learned task.

6 CONCLUSIONS
In this paper, we proposed an unified formalism to address imitation
learning and RL problems. Using this formalism, we analyzed sev-
eral imitation-like learning mechanisms, such as stimulus enhance-
ment, response facilitation, contextual learning and emulation. These
mechanisms can lead to imitative behavior without being imitation in
the stricter sense of the concept. In this formalism, which we refer as
the learning by observation and reward (LOR), these behaviors can
be summarized as:

• Stimulus enhancement: biases exploration using the observed pol-
icy;

• Contextual learning: uses the observed transitions to improve the
model of the world;

• Response facilitation: uses the observed transitions/rewards to im-
prove the model of the world and accelerate learning;

• Emulation: uses the observed sequence of states, to either replicate
the dynamics of the underlying Markov chain or final state.

One of the major contributions of the paper was to unify all
of these mechanisms using a common formalism. We showed that
this modelation is possible and the resulting behavior of the learner
matches the descriptions of the corresponding behaviors in animals.
We also discussed that, when learning a task from an expert, there
are many sources of information and each of them can be exploited
individually or in combination.

The results presented clearly established one of the known advan-
tages of imitation learning: the imitation learner acquired the opti-
mal policy for the problem faster than a learner following a standard
trial-and-error learning strategy. We emphasize that, in the discussed
cases of imitation-like behavior, the agent would still be able to learn
the task on its own—the learner did not infer the solution from the
demonstration. Instead, the demonstration provided hints on how to
solve the task that the learner used to learn the task more efficiently.

It is interesting to note that, as these mechanisms do not rely com-
pletely on the details of the demonstration, they can also learn the op-
timal policy even when the demonstration is sub-optimal. The learner
can thus look at someone performing a task and then understand the
goal of the task and outperform the teacher.

We also emphasize the difference between imitation-like behav-
iors and “pure” imitation methods. In a pure imitation system, the
found solution should not exist in the learner repertoire; or it should
not be possible to know the task if it were not for the demonstration.
In our formalism this translates into the fact that, without the demon-
stration, the agent does not know the task (there is no pre-defined
reward mechanism). In imitation-like methods this reward function
previously exists and the learner can always learn the task on its own.



The demonstrations used throughout the paper do not illustrate
the full potential of the different methods, mainly due to the great
simplicity of the task considered—the state and action spaces are
small and the task is easily defined by a very simple reward function.

In our proposed LOR framework it is not easy to distinguish be-
tween action-level and program-level learning, since the important
steps of the demonstration are abstract concepts that can be inter-
preted and implemented in different ways. We intend to address this
problem with further detail by defining an hierarchical learner where
we can define actions at several “resolutions”. We also intend to study
the effects of partial observability of state and action in learning by
imitation.
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