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Abstract
This paper proposes a new heuristic algorithm suitable for real-time applications

using partially observable Markov decision processes (POMDP). The algorithm is
based in a reward shaping strategy which includes entropy information in the re-
ward structure of a fully observable Markov decision process (MDP). This strat-
egy, as illustrated by the presented results, exhibits near-optimal performance in all
examples tested.

Keywords. Partially observable Markov processes, entropy, reward shaping, real-
time applications

1. Introduction

The reference to autonomous systems may be found in a multitude of contexts whenever
a system is able to perform some task with minimum interference from a human operator.
Moreover, the reference to autonomous systems often appears in the context of robotic
navigation, where an autonomous robot is able to navigate in some environment.

Robotic navigation has been the subject of intensive research, since the ability of
a robotic agent to perform certain tasks greatly depends on its ability to move au-
tonomously in its environment. Many different approaches have been proposed to cope
with this problem, ranging from the classical control methodologies [17] to biologically
inspired approaches [9]. Many other approaches have been proposed in the literature,
some of which may be found in [5, 16].

In recent years, particular interest has been devoted to the use of topological maps in
navigation, [19]. A topological map represents an environment as a discrete set of states
(the nodes in a graph) and the transition information between the states (the edges of a
graph). This type of environments may be easily described using Markov processes and,
in fact, Markov processes have already been used to model robotic navigation tasks using
different methodologies, [5, 15, 16].

In this paper, we model the control of a mobile robot as a partially observable
Markov decision process (POMDP). In particular, we use POMDPs to model a mobile
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robot which has to perform some navigation task (such as reaching a goal or following
a path along a set of states) and propose a new heuristic approach suitable for real-time
implementation on a mobile robot. The POMDP framework allows to model not only the
uncertainty inherent to the robot’s movement but also to its measurements.

General reviews of POMDP solution techniques can be found in [1,2,4]. Exact solu-
tions for POMDPs have been developed and can be easily found in the literature [3, 11].
However, the most efficient exact methods developed so far (incremental prunning [3]
and witness [11]) require prohibitive computational requirements and, hence, are of lit-
tle use for systems with more than a few dozen states. Results on the POMDP com-
plexity [7, 13] leave hope for little improvement and, hence, approximate and heuristic
methods have been proposed to solve POMDPs. Some of these methods may be found
in [1, 5, 6, 10, 14].

In this paper we propose a new heuristic algorithm to be used in real-time appli-
cations using POMDPs. This algorithm is based in a reward shaping strategy which in-
cludes entropy information in the reward structure of a fully observable MDP which, as
illustrated by the presented results, exhibits near-optimal performance in all examples
tested. Furthermore, the simplicity of the method makes it suitable for real-time imple-
mentations, since its near-optimal performance requires minimum computational load
and, as such, may be easily implemented in a mobile robot. This, in turn, permits the
use of POMDPs as rich models which can be used in high-level (topological) navigation
tasks such as goal reaching of path following.

The paper is organized as follows. Section 2 provides a quick overview of POMDPs.
Section 3 presents a detailed description of the approach followed to solve POMDPs
and introduces the proposed algorithm. This section conveys the main contributions of
the paper. Section 4 presents some experimental results of tests conducted on several
different partially observable environments. Section 5 concludes the paper by presenting
the most important conclusions of the work and directions for future research.

2. Partially Observable Markov Processes

Consider a mobile robot moving in an environment. Suppose that such robot is to per-
form some given task in a specific location of the environment. Suppose, furthermore,
that the environment may be represented by a topological map (see Figure 1). In
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Figure 1. Example of a topological map from [19].

a topological map, the environment is discretized in a set S of states corresponding
to possible “topological locations” for the robot. At each time instant t, the robot has



available a finite set A of possible actions (e.g. “move North”, “go to state 2”, etc.).
Whenever the robot chooses action a at state s, it will move to state s′ with probability
P[St+1 = s′ | St = s,At = a] = T (s′, a, s), where St and At are the state and the
action of the robot at time instant t. Function T is the transition probability function.

Every time the robot chooses some action a at state s it will be rewarded with a
deterministic reward R(s, a) (the reinforcement) which depends only on the current state
and action. The reward mechanism is the formal entity used to establish the navigation
purpose for the robot. At each time instant, the robot will choose its action At so as to
maximize the functional

V (s) = E
h ∞X

k=0

γkRt+k | St = s
i
, (1)

where Rt is the reward received at time instant t and 0 < γ < 1 is a discount factor
assigning greater importance to more immediate rewards than to those which come in
a distant future. Function V is the value function, since it assigns a value to each state
s ∈ S. The solution for the navigation problem is determined once the robot knows,
for each state s ∈ S, the optimal action to take, with respect to (1). The value for each
state-action pair (s, a) is given by the Q-function,

Q(s, a) = E
h ∞X

k=0

γkRt+k | St = s, At = a
i
.

The navigation of a mobile robot in an environment is sustained by its onboard
sensors whose measurements allow to close the robot’s control loop, which will be
present regardless of the particular methodology applied to control the robot. Any con-
trol methodology must be able to cope with the uncertainty inherent to sensorial data and
be robust to the possible errors in the measurements.

As argued in [16], a conventional path planner may present poor performance when
facing uncertainty arising from the sensor measurements. In order to include sensor un-
certainty into the model described so far, suppose that the robot has no direct access to its
current state but, instead, at each time instant it reaches a state s, it makes an observation
x with probability

P[Xt = x | St = s, At−1 = a] = M(x, s, a),

where Xt is the observation at time t and we allow it to depend not only on the robot’s
current state, but also on its last action. The observations Xt take values in a finite set X .
Function M is the observation probability function.

Since a control strategy simply based in the current observation may lead to an arbi-
trarily poor performance, [18], the concept of belief state is introduced. A belief state π
is a probability distribution over the set of all states and indicates, at each time instant,
the probability of being in each of the states in S. Formally, πt(s) = P[St = s], for each
s ∈ S. This belief state captures all the relevant aspects of the entire previous history of
the robot. Given that, at some time instant t, an action a was taken and an observation x
was then made, the value of the belief-state may be updated using simple Bayesian rules
according to

P[St+1 = s′ | At = a, Xt+1 = x] = πt+1(s
′)|a,x =

M(x, s′, a)
P

s πt(s)T (s, a, s′)P
s,s′′ πt(s)T (s, a, s′′)M(x, s′′, a)

. (2)

Recall that, in (1), a value was assigned to each state s ∈ S. Using a similar rea-
soning, it is also possible to assign a value to a belief state π. Define a policy δ(π) as a
mapping from the belief space, Π(S), into A. The value of a particular belief state πt,
according to a policy δ is



V δ(πt) = E

"
∞X

i=0

γiRt+i | πt

#
=

=
X

s

πt(s)
h
R(s, δ(πt)) + γ

X
s′,x

T (s, δ(πt), s
′)M(x, s′, δ(πt))V

δ(πt+1)
i
. (3)

A policy δ∗ is optimal if V δ∗(π) ≥ V δ(π) for any policy δ and any belief-state π.
The corresponding optimal value function, denoted as V ∗, verifies

V ∗(π) = max
a∈A

X
s

π(s)
h
R(s, a) + γ

X
s′,x

T (s, a, s′)M(x, s′, a)V δ(π′)
i
.

In spite of all the work in POMDPs, the exact algorithmic solutions for solving
POMDPs, i.e., for computing the optimal policy δ∗, still suffer from severe limitations,
mainly due to the complex computation involved in any iterative process using (3). In
Section 3, a new heuristic method is proposed which is significatively more time-efficient
than known exact POMDP solution algorithms. This feature makes it suitable for real-
time implementations.

3. Policy Computation in POMDPs

Although partial observability provides a powerful way of modeling uncertainty arising
from noisy, partial or aliased measurements, this increased modeling ability over fully
observable MDPs introduces severe problems in the computation of the optimal policy.
Solutions for fully observable MDPs can be computed using efficient algorithms such as
value iteration (see [7] on complexity of MDP solutions) and the corresponding optimal
policies can be implemented straightforwardly in a robot. In the literature, [2, 4, 8, 10],
some heuristic methods have been proposed which make use of MDP results in order to
compute approximate policies for POMDPs.

Examples of such methods include grid-based methods, [8], where the belief-space
Π(S) is discretized into a finite set of grid-points. The obtained model may then be
treated as an MDP and near-optimal behavior is recovered. Grid-based methods provide
good results but discretization may still require a prohibitively large number of grid-
points in order to properly sample the belief-space. Another sound method from the lit-
erature is the Q-MDP algorithm, [10], where the optimal Q-functions for the underlying
MDP are computed and the derived policy is given by

a∗ = arg max
a∈A

X
s

π(s)Q∗(s, a).

The computational requirements of Q-MDP are similar to those of MDP methods. How-
ever, if the robot finds itself in a situation where the uncertainty regarding its actual state
is large, the Q-MDP will present a poor performance, since it does not take such uncer-
tainty into account.

3.1. Entropy

The Q-MDP algorithm will not choose an action a just to collect information, as argued
in [10]. To overcome such limitation, some alternative methods, [1, 4], have been pro-
posed which use the information that an action may, potentially, bring to the agent. These
methods borrow the concept of entropy from information theory, and define normalized
entropy of a belief-state π as

H̄(π) = −
P

s∈S π(s) ln(π(s))

ln(|S|) , (4)



where |S| is the number of elements of S. Notice that 0 ≤ H̄(π) ≤ 1. In particular,
H̄ = 1 for a uniform belief-state and 0 only if there is a state s such that π(s) = 1.
Entropy provides a useful measure on the uncertainty/information inherent to a given
belief-state π.

We are interested in devising a method that overcomes the most obvious limitations
of Q-MDP while maintaining the same computational load. In particular, the method
should cope properly with large uncertainty in the belief-state. Large-entropy belief-
states should seek to reduce uncertainty while low-entropy belief-states should closely
follow the underlying MPD optimal policy. As described in Chapter 6 of [4], dual-mode
and weighted entropy control strategies are proposed which include entropy minimiza-
tion considerations when defining the policy for the robot. However, as argued in [1, 2],
such policies implicitly assume that the minimum of the value function is achieved at the
point of maximum entropy. Because of the convexity of the value function, [4], the point
of maximum entropy should, in fact, be close in some sense to the point of minimum
value. However, in situations where the two points are actually different, this may lead
to poor performance of these methods.

To overcome such limitations, a modified MDP is proposed which includes, in its
reward structure, entropy information regarding each particular transition. Moreover, the
entropy information is associated with reward-information in order to keep the policy
from blindly seeking minimum-entropy points. The optimal policy from this modified
MDP will then be combined (using an entropy weighting criterion) with the optimal
policy from the original MDP to yield the final policy.

If the robot is at some state s ∈ S, a transition occurs by choosing an action a ∈ A
and then observing some x ∈ X . As such, we define the transition entropy associated
with the triplet (s, a, x) as

H̄T (s, a, x) =

= −

X
s′

T (s, a, s′)M(x, s′, a)P[x | s, a]X
s1,s2

T (s1, a, s2)M(x, s2, a) ln(|S|)
ln

 
T (s, a, s′)M(x, s′, a)X

s3,s4

T (s3, a, s4)M(x, s4, a)

!
(5)

The value of H̄T (s, a, x) provides a measure of the expected entropy arising from
a transition triplet (s, a, x). See [12] for a detailed analysis of (5) and a formal definition
of transition entropy. We define the reward associated with the triplet (s, a, x) as

R(s, a, x) = max
a′

X
s′

T (s, a, s′)M(x, s′, a)R(s′, a′).

The reward R(s, a, x) provides a myopic measure of the expected revenue, in terms
of rewards, resulting from the transition triplet (s, a, x). By modifying the rewards of
the underlying MDP by including transition entropy information, we obtain a new MDP
(S,A, T, RN ), where RN is defined as

RN (s, a) =
X

x

R(s, a, x)(1 − H̄T (s, a, x)).

The optimal Q-functions from both the original and the modified MDPs, Q∗ and
Q∗

N , are then combined, using entropy weighing, to yield the final policy:

δ(π) =
X

s

π(s)

»
Q∗(s, a)

`
1 − H̄(π)

´
+ Q∗

N (s, a)H̄(π)

–
.



It is evident that, in run-time, the proposed algorithm needs only the MDP solutions
(which can be computed off-line) to choose the POMDP action. This makes it suitable
for run-time implementation, similarly to the Q-MDP algorithm, since, at each time in-
stant, it only requires the on-line update of the belief-state, the computation of the cor-
responding entropy and its product by matrices Q∗ and Q∗

N , which are all simple opera-
tions.

Suppose, then, that a POMDP is used to model a mobile robot moving in an environ-
ment described as a topological map. POMDPs provide rich models since they take into
account the uncertainty inherent to the movement of the robot, while allowing arbitrary
noise in the sensorial data (for example, no Gaussian hypothesis is required or implicit).
The policy arising from the proposed algorithm, which we will refer as the TEQ-MDP
(Transition Entropy Q-MDP), can be implemented in a robot which will, at each time
instant t, act accordingly, choosing its action depending on its current belief-state.

4. Results

In this section we present results obtained by the proposed TEQ-MDP algorithm, and
compare them with those obtained with the Q-MDP and with the optimal behavior in the
underlying MDP. The description of the partially-observable navigation problems where
the algorithms were tested can be found in the literature, namely in [4, 10, 12]. We also
refer to [12] for a more detailed analysis of the performance as well as to results of the
TEQ-MDP algorithm in other test-environments.

The test environments, herein named Shuttle, 4× 4 Grid, Cheese Maze, 4× 3 Grid
and 89-State Map, allow a comparison on the performance of the three algorithms (MDP,
TEQ-MDP and Q-MDP), when applied to each case. The dimensions of the correspond-
ing MDPs are listed in Table 1.a). In Table 1.b), the off-line computation time is also pre-
sented, in seconds, when γ = 0.995. Clearly, the Q-MDP policy uses the MDP op-

Table 1. MDP dimensions and computation time.

Environment |S| |X| |A|
Shuttle 8 5 3
4 × 4 Grid 16 2 4
Cheese Maze 11 7 4
4 × 3 Grid 11 6 4
89-State Map 89 17 5

MDP TEQ-MDP Q-MDP
0.484 s 0.719 s 0.484 s
0.735 s 0.922 s 0.735 s
0.516 s 0.890 s 0.516 s
0.562 s 1.094 s 0.562 s
7.110 s 20.390 s 7.110 s

a) MDP Dimensions. b) Computation time.

timal solutions and, as such, takes the same computation time. The TEQ-MDP requires,
in general, a slightly larger off-line computational effort. It should however be referred
that the times in Table 1.b) are concerned to computations performed off-line and that,
in terms of on-line effort, both algorithms present negligible computation time.

In Table 2 we present the total discounted reward obtained by the different algo-
rithms in a 100 time-steps cyclic trial with the results averaged over 1000 Monte-Carlo
runs and γ = 0.995. The bold-marked line corresponds to a large-dimension example
which will be commented in detail further ahead. In the first 4 environments, the
TEQ-MDP has a behavior which is similar to the Q-MDP which, as seen in [4, 10], is
near optimal for these four environments. The comparison between the results achieved
by the TEQ-MDP and the Q-MDP agents and the results obtained by the MDP agent



Table 2. Discounted Reward for γ = 0.995. Average on 1000 Monte-Carlo runs of 100 time instants.

Environment MDP TEQ-MDP Q-MDP
Shuttle 201.956 201.609 201.585

4 × 4 Grid 17.769 14.689 14.595

Cheese Maze 15.778 14.381 14.357

4 × 3 Grid 12.611 9.678 9.744

89-State Map 62.832 35.747 0.884

shows that, in these four problems, partial observability does not pose serious difficulties
in terms of control, since all three agents present similar total rewards. This happens be-
cause either the observations allow to disambiguate many of the states of the underlying
MDP or the optimal policies are very simple and easy to follow even in the absence of
state information (see [12] for details on the problems). The 89-State Map problem

Table 3. Goal achievement percentage for the 89-State Map.

Method γ = 0.95 γ = 0.995

MDP 100% 100%

TEQ-MDP 63.7% 61.4%

Q-MDP 3.9% 1.6%

is aimed at testing the performance of the algorithms in a larger state-space POMDP.
In this example, a robot moves in an environment with significant perceptual aliasing
(many states exhibit similar observations) and, at each time instant, has several available
possible actions, including the possibility of performing no action whatsoever. A differ-
ent measure of performance will be used for this example that accounts for the number
of runs in which the agent was able to reach the goal. The percentage of success (goal-
achievement) in this problem is summarized in Table 3, where it is clear that the supe-
riority of the TEQ-MDP algorithm is overwhelming. Notice the clear relation between
the percentages in Table 3 and the rewards in the last example of Table 2. This is due
to the fact that, in this environment, a large number of states yield similar observations,
this leading to frequent situations where the agent is completely lost. As such, the Q-
MDP agent is not able to choose an action in order to successfully progress in the maze
(see [12] for further details).

5. Conclusions and Future Work

In this paper we proposed a new POMDP algorithm, named Transition Entropy Q-MDP
(TEQ-MDP). This method is suitable for real-time implementation and, thus, adequate
for navigation tasks of mobile robots. The algorithm includes entropy information in
the reward structure of a modified (fully observable) MDP and uses this reward-shaping
strategy to overcome some limitations of other fast POMDP methods. The algorithm was
tested in several examples from the literature and presented near-optimal performance in
all examples tested. In [12] further tests confirm the near-optimal behavior of the TEQ-
MDP algorithm.

Although the last example presented corresponds to a large state-space problem (83
states), future work must include additional tests of the TEQ-MDP algorithm in even
larger problems such as the large real-world problems described in [4], to understand its



exact range of applicability and perceive if it actually constitutes a universal alternative
to the computationally untractable exact solution methods.
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