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Abstract

This paper describes a hybrid architecture for robot control supported on basic
properties of Hilbert spaces.

The proposed architecture is in the class of behavior based paradigms, with
the control objectives specified as goal sets to be reached by the robot. This
characteristic is well adapted to the control of semi-autonomous robots as tasks
can be loosely specified by external operators using goal regions in the workspace

where to steer the robots.

Simulation results on the control of a car-like robot are presented.
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1. INTRODUCTION

Semi-autonomous robots have been gaining im-
portance in the last few years after the slow in-
crease in the use of standard autonomous robotics
in practical applications. Despite the vast work
in the field of autonomy, where multiple architec-
tures have been proposed and a large number of
functionalities identified, intelligent control archi-
tectures have still to evolve at the higher decision
levels that are often required by full autonomy.

Applications such as surveillance in wide open
areas, rescue missions in catastrophe scenarios
and the maintenance of remote infrastructures are
examples of socially/economically relevant appli-
cations where autonomous robots can be used.
Current state of the art locomotion/manipulation
technologies are able to remotely operate in most
of these environments under guidance of an ex-
ternal operator. Relevant examples can be found
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in minning, sewers inspection and maintenance, in
aerial surveillance and even in medicine with some
remote surgical interventions. The interactions be-
tween robots and operators must account for the
fast dynamics of real environments that require
fast control actions to be taken either by the
human operators or the robots. The teleoperation
concept from the early days of robotics evolved to
control paradigms in which (i) the human opera-
tor only interacts with the robot at sparse instants
providing decision capabilities whenever that of
the robot reaches its limit, and (ii) the interaction
is specified in loose form, i.e., goals are specified
up to some uncertainty.

The approach to control of semi-autonomous ro-
bots considered in this paper has two distinctive
features: (i) there is not enough information on the
environment so that a specific goal position for the
robot can be defined, or (ii) only a motion trend,
or behavior, is specified in the form of a goal region
to be reached by the robot. Therefore, instead
of specifying a goal configuration or a trajectory
to be followed by the robot, this paper addresses
the situation where a set of goal configurations



is admissible from a task execution perspective.
These goal configurations induce the aforemen-
tioned motion trend and hence the behavior of
the robot.

The paper is organised as follows. Section 2 de-
scribes the control algorithm supported on basic
concepts from Hilbert spaces. Section 3 presents
simulation results for a car-like robot (simulation
experiments for unicycle robots, operating iso-
lated and in a team, were presented in (Sequeira
and Ribeiro, 2003a)). Section 4 presents the con-
clusions and discusses research directions. Appen-
dix A details the basic tools on the geometry
of Hilbert spaces that are used in the paper.
Appendix B introduces the stability theorem of
the generalized Lyapunov direct method used in
Section 2 to develop arguments on the conditions
for the successful execution of a mission by the
robot.

2. BEHAVIORAL CONTROL ON HILBERT
SPACES

For the purpose of this paper, robots are modelled
by differential inclusions of the form

g€ f(q,U) (1)

where g € @ stands for the C-space variable and
U is a compact control space.

Users are assumed to interact with the robot by
specifying goal regions to be reached by the robot
in a behavioral space?. This form of interaction
is close to what humans do when defining a task
to be executed. For example, when driving a car
a human driver is constantly selecting regions in
its visual space where to steer the car; in some
sense, this corresponds to the generation of a task
achieving behavior. Similarly, an external user can
control a robot by specifying goal regions to be
reached this being a generalization of the standard
trajectory following control problem.

From a behavioral perspective, a region of interest
is a subset K C (@ that can either be specified
by an external user with a given purpose or be
defined by the robot control system. Such regions
can be easily extracted from sensor data, e.g., a
region of a specific brightness or color in an video
image, or a region with particular range values in
a range image.

Once a region of interest K is defined, the set of
motion directions at the current configuration ¢
that point to K is defined as Ag(q) = K — q.
The set Ag(q) does not account for any motion
constraints imposed by the robot kinematics. For
a holonomic robot, it suffices to use any control

2 A space where the control objectives are defined.

such that Fk(q) = f(q,U) N Ak(q) # 0 to have
the robot reaching the goal set K. For nonholo-
nomic robots Fi (q) is often empty, as the motion
is constrained by the kinematics, and hence ma-
neuvering by the robot is required. Furthermore,
the set K can be specified in regions such that
complex maneuvering is necessary.

Sufficient conditions for the sets f(q,U) and
Ak(q) to converge to each other whenever their
intersection is empty are presented in the follow-
ing Lemma (see Appendix A) that is the core of
the control algorithm proposed in this paper.

Lemma 1. (Point-to-set convergence).
Let @ be a Hilbert space, K C @ a convex set,
g € Q\K and define

A=(¢, T (a)), (2)

where T% (¢q) stands for the conjugate cone to K
at the nearest point to g belonging to K.

If the controls are chosen such that,
Ir>0 i VisT, A >0

then ¢ — K as t — oo.

Roughly, if the projection of some admissible
velocity vector, ¢, over any direction leading to
the goal set T} (q) is positive, then this velocity
vector leads to a decrease in the distance between
the robot and the goal set. Although Lemma 1
was tailored to situations when Fi(q) = 0 it is
clear that controls in Fi(q) # 0 lead to A > 0 as
the distance between the robot and the goal set
also diminishes.

Lemma 1 suggests a partition for the control set
in three disjoint regions, U = Uy U U U Us, where
each of the U; contains, respectively, the controls
leading to A > 0, A = 0 and A < 0. Controls
in U; guarantee that the robot approaches its
goal. Controls in Us do not guarantee the decrease
in the distance between the robot and its goal.
Nevertheless, they may still be useful to maneuver
the robot to a point that simplifies the reaching
of the goal. Controls in Us; guarantee that the
distance between the robot and its goal does not
increase and, depending on the specific problem,
may even decrease. Table 1 summarizes the con-
trol algorithm.

To account for the conditions in Lemma 1, the
algorithm starts by extracting a convex goal set K
out of the data provided by the mission specifica-
tions and/or by the onboard sensors. Extracting a
convex set out of an acquired raw A g can be made
using computational geometry techniques (see, for
example, (Preparata and Shamos, 1985)).

Choosing a control that maximizes A corresponds
to the maximization of the rate at which the



if necessary, convexify the goal set Ak (q);
compute Uy = {u € U : A > 0};
if Uy # 0 choose u = argy, max(A);
otherwise
compute Uy = {u € U : A = 0};
compute the partition Uy = U1 U Uz U Uas

where

U21:{UEU2:q:O}

Ugg =queUsz:qL (Q)}

Uz = UEUQ-H (qlfo}
if Usg # 0 then choose any u € Usg;
otherwise

compute Uz = U\U1 U Us
choose u € Uz1 U Usz U Us;
repeat until goal is reached

Table 1. Robot control algorithm

distance between the robot and the goal K de-
creases. Controls in Us; do not cause any progress
in the motion. Unless the robot reached the goal or
the robot has to be stopped during maneuvering,
these controls must be avoided. Under controls
in Uss the robot moves in such a way that the
distance to K remains unchanged. For example, if
K is a disc in a 2D configuration space, controls
in Us are those that steer the robot around the
disc, keeping the distance between the robot and
the disc. Controls in Uss indicate a null distance
between the robot and the goal set and hence are
preferable among those in Uy UUso UUs. In some
situations where U; = () it may be necessary to use
controls in Us (see the first experiment in Section
3).

The algorithm in Table 1 has no deadlocks as
each state has an output transition. However,
the controls in Usy, Uss and Us are defined after
motion strategies specific to the robot and/or the
mission assigned. If not properly chosen these may
lead to a livelock situation in which the robot
endlessly repeats a sequence of maneuvers ever
reaching the goal.

A robot modelled by (1) and controlled by the
algorithm in Table 1 is described by

F(g, 1) ifA>0

f(g,Ua1) if ¢=0
g€ flaUs) lfqiTK() (3)
f(a, U23 ) if [Tk ()l =
flq,Us) ifA<0
where [T (¢)|]] = 0 indicates that the robot is

at the boundary of K, i.e., the distance to K
measured from the current configuration, ¢, along
a direction in T%(q) is zero.

A sufficient condition for a mission to end success-
fully is that U; U Uss # 0. This means that either
Uy # 0 and hence the robot is at a configuration
where it can approach K or Us3 # () and hence the
robot has reached a point in the boundary of K,
Bd(K). When ¢ — Bd(K) using motion directions
in Fr(q), |Ax(q)|| — 0, meaning that a point in

the kernel of Fi(q) is reached. The motion direc-
tions generating controls in Usz though may not
stop the robot still represent a successful mission
as the robot reaches a point in the boundary of K.
Nevertheless, without lack of generality, f(q, Uas)
can be extended by

f(Q, Uss) = { ?(if Vu € Uss, f(Qa

q, Ussz,) otherwise

where Uss, C Uss is the set of controls such
that Yu € Uas,, f(q,u) € Ker(f(¢q,U)). In prac-
tical terms, this extension corresponds to force
the robot to stop whenever it touches K (for
the sake of simplicity it is assumed that the
kinematics allow sudden stops and dynamics side
effects are ignored). A similar extension can be
made for f(q,U). The set of equilibria defined
by Ker(Fk(q)) along with those introduced by
the extensions of f(q,U1) and f(q, Ua3) define the
conditions for the success of a mission.

u) 3 Ker(f(q,U))

The kernels of the remaining terms in the right-
hand side of (3) define alternative equilibria that
correspond to situations where the robot stops
before reaching K and hence must be avoided.

Following the conditions in the Lyapunov direct
method (see Appendix B for a brief presentation
and (Smirnov, 2002; Aubin and Cellina, 1984)
for further details) to hold for a system in the
form (3), the upper Dini derivative of a Lyapunov
function for (3) must be bounded by a negative
function for stable equilibria.

Given that A > 0 is a sufficient condition for the
mission to be successfull, if there is a sequence of
controls corresponding to a sequence of switchings
among the set valued maps in the righthand side
of (3) resulting in a successful mission, then \? is
a Lyapunov function for this system.

The computation of the Dini derivative for A2,
D% )2, depends on the particular robot. The exis-
tence of a Lyapunov function implies that the hy-
brid system (3) reaches an equilibrium and hence,
for the adequate sequence of controls (which is
problem dependent), any mission can be success-
fully completed. Under the conditions of the Lya-
punov theorem, it suffices to prove that Dt A? is
bounded to ensure that A2 is a Lyapunov function.
By construction, A is bounded as it is piecewise
smooth and exhibits only discontinuities of the
first order (see the plots in Section 3). Therefore it
is lower semi-continuous, and hence of A2, which
means that it is upper bounded by a negative
function, (Bacciotti et al., 2000).

The practical interpretation of the Lyapunov the-
orem is well known in hybrid systems theory,
namely, the envelop of the Lyapunov function is
strictly decreasing along the trajectory of the sys-
tem towards the stable equilibria (see for instance
(Lygeros, 1999)).



3. SIMULATION RESULTS

This section presents simulation experiments on
the control of a car-like robot (see Figure 1) to
illustrate the results in Section 2. These exper-
iments aim at demonstrating the feasibility of
the hybrid control scheme in Table 1. The robot
mission is to reach a goal set region defined by
a ball of radius 0.1 centered at a point ggx. No
obstacles are considered. However, it is worth to
note that these can easily be accounted for by
proper definition of the goal sets to be reached.

Two classes of experiments are presented: (i) the
control is performed in the full C-space and (ii)
only the zy workspace is used. The ball assump-
tion for the goal set K simplifies the computation
of T} to

Ti(q) = —a(rx(q) — q) /ll7x(q) — 4l

where 7x (q) = ¢k +0.1(¢ — gx)/|lq¢ — ¢k || stands
for the best approximation projection of ¢ onto
K (see Appendix A) and a > 0 is an arbitrary
constant.
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Figure 1. The car-like mobile robot

The computation of the partition for U in Table 1
for a generic robot may be computationally inten-
sive. Exhaustive search techniques can be used to
evaluate the projection map and avoid solving in-
verse dynamics problems, e.g., computing u from
g, if the control space is discretized into a small
number of admissible values. At each instant, a
compact set of controls, V x Qs =[—1:0.5:1] x
[1:0.1: 1], is used to search for U;. The steering
wheel angle is constrained to —7/2 < ¢ < 7/2. In
all the experiments, whenever A\ = 0 the controls
are kept as before.

Figure 2 illustrates the results obtained when the
algorithm is applied in the configuration space
[,y,0,¢]. The robot starts from configuration
[0,0,0,0] and the goal region is set to a ball of 0.1
radius centered at ¢ = [1, 1,0, 0]. To reach position
[x,y] = [1,1] with null orientation and subject

to the considered compact control set requires a
complex (with numerous maneuvers) trajectory.
The first part is smooth and corresponds to the
minimization of the distance along the x coor-
dinate. After a re-orientation maneuver around
[z,y] = [1,0], the robot proceeds to minimize
the y coordinate. This maneuver can be identified
in the A plot around the instant of the first 0
crossing. The final approach to the goal set is
made through a number of complex maneuvers,
with the robot moving back and forth to reach
a suitable orientation. The A plot shows that for
the most of the time controls in Us are used. These
are mainly needed for the maneuvering shown in
the zy plot. After a brief initial period where A
decreases to 0 (corresponding to the initial hori-
zontal part of the xy trajectory) the system enters
a heavy maneuvering phase. The final part of the
mission corresponds again to a decrease of A to 0.
From the plot it is clear that, after the spike near
100 s, the envelop of A? is strictly decreasing, as
expected from the Lyapunov theorem.

Figure 3 shows the results when the behavioral
space is restricted to [z, y]. In this case the control
variable is chosen as u = cos(¢)v. Given the
kinematics of the robot, a natural objective when
choosing wg is to require that 6 4+ ¢ tends to the
direction of the goal set. Thus, w, is chosen to
approach this direction. No bounds were assumed
for the controls outside U;. The A plot exhibits a
smooth behavior decreasing to 0, indicating that
no harsh maneuvers were used.

Figure 4 shows the results when controls outside
Uy are bounded, with |v] < 10 and |ws| < 13.
Although the zy trajectory is almost identical to
the one in Figure 3, the behavior of the control
system is completely different. During the first
part of the experiment (visible as the horizon-
tal region in the distance plot) the robot slowly
changes the orientation of the steering wheel after
which it proceeds towards the goal set. The initial
horizontal trajectory for A is caused by the reori-
entation of the steering wheel. Around 4.4 s the
plot shows a spike that indicates the beginning of
the motion of the robot in the xy plane. Clearly,
the behavior of the A? is also upper bounded by a
decreasing curve, hence verifying the stability of
the equilibrium state corresponding to the end of
the mission.

4. CONCLUSIONS

The paper described the basics of a hybrid con-
troller supported on basic concepts from Hilbert
spaces. Standard results from generalized calcu-
lus were used to demonstrate the existence of a
Lyapunov function such that, under general as-
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Figure 2. Car control in the (x,y, 6, ¢) C-space

sumptions on the robot model, the hybrid control
structure yields a successful mission.

The simulation experiments show that the speci-
fication of a task as a goal region for the robot
to reach can lead to reasonable robot trajectories.
This represents a promising approach to alterna-
tive control strategies for semi-autonomous robots
under the premises referred in Section 1.

Further research on both the analysis and the
synthesis problems related with this work is nec-
essary, namely in what concerns design require-
ments for the motion strategies to be applied when
A <0.

Appendix A. BASIS TOOLS ON THE
GEOMETRY OF HILBERT SPACES

Definition 1. (Distance between subsets).
Let A and B be two subsets of a normed space.
The distance between A and B is defined as

Xy trajectory
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Figure 3. Car control in the (x,y) workspace

d(4,B) = min [z —y| (A.1)

)

where || - || stands for a norm. Although commonly
referred as a distance, (A.1) is not a metric. The
distance between a point x, € A and a set B is
defined by making A a singleton.

The following theorem defines a projection map of
a point onto a set. See (Aubin and Cellina, 1984)
for a demonstration.

Theorem 1. (Best Approximation Theorem).

Let K be a closed convex subset of a Hilbert space,
X. There is a map 7 : X — K and a unique
element 7 (x) verifying

Vaex, |[lz = mx ()l = minlz — y|

The map # : X — K projecting X into the
goal set K is called a best approximation projector
(b.a.p.) whenever the following two conditions are



Xy trajectory
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verified

H?TK(x) — 7TK(y)H < H-f - yH non-expansivity
(rr(x) — 7k (y),z —y) > 0 monotonicity
(A.2)

with (-, -) standing for an inner product and || - ||
for the corresponding induced norm.

The convergence between the set of admissible
velocities and the set of goal velocities is a gener-
alization of the convergence between the current
velocity and the set of goal velocities. The solu-
tion of this last problem implies a solution of the
former.

Lemma 2. (Point-to-set convergence). Let X be a
Hilbert space, K C X a convex set, z € X\ K and
7wk () a b.a.p. of a point « onto K. Furthermore,
let 2, = z(t,) be a subsequence of a trajectory
x(t), outside K, and define

A= (Tp41 — T, TK (Tnt1) — Tng1), (A.3)

such that, Ips¢ : V¢, >7, A > 0. Then d(z,, K) — 0
as m — 0o.

When z,4+1 — x, the condition in Lemma 2 can
be formulated in continuous time, as

(&, T (2)) > 0 (A.4)

where T () represents the conjugate cone to K
at T (x), i.e., the set of vectors orthogonal to the
set tangent to the border of K at mx ().

See (Sequeira and Ribeiro, 2003b) for a demon-
stration.

Appendix B. LYAPUNOV DIRECT METHOD

This section presents the basics on Lyapunov
direct method (see for instance (Smirnov, 2002)
for details).

The upper Dini derivative of a function V(q) at
vector v is defined by

D+V(Q)(U) = lim sup V(q + hUI) - V(q)

h—=0 41—y h

Consider the system ¢ € F(q), where F : R™ — R™
and 0 € Ker(F(q)).

Theorem 2. (Lyapunov stability theorem).
Assume that there exist > 0, a positive definite
function V' : R™ — R and a negative definite
function W : R™ — R such that

Yo € F(q),lqgl <n, D*V(g)(v) <W(q)

Then the equilibrium position ¢ = 0 is asympto-
tically stable.
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