
Actas do Encontro Científico
3º Festival Nacional de Robótica- ROBOTICA2003
Lisboa, 9 de Maio de 2003

TARGET TRACKING USING FUZZY CONTROL

Nuno de Castro, Rodrigo Matias, M. Isabel Ribeiro

Institute for Systems and Robotics, Instituto Superior Técnico,
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

{nunocastro,rodrigo.matias@clix.pt}, mir@isr.ist.utl.pt

Abstract: This paper presents an approach to solve the target-tracking problem using a
two-loop fuzzy logic controller, one for range control to the target and the other for
orientation correction. These loops are assembled in a conversion block, whose output
links general variables as linear and angular accelerations to the particular state-variables
of the robot, resulting on a low-cost and easy implementable controller. The method was
tested in simulation and in a real platform, using a differential-drive Nomad Scout. Both
have achieved success in the task of following the target even when the system kinematics
parameters and the sampling time suffer changes in their nominal values.

Keywords: fuzzy logic controller, target tracking, mobile robots, vision, differential
topologies, Soccer Robotics, Nomad Scout.

1. INTRODUCTION

Target tracking is an important problem for a number
of different applications that may benefit from the
use of a mobile robot. Following an object at a given
distance has application in several fields, namely in
traffic control based on a «follow-the-leader»
concept or in semi-automatic vehicles on an attempt
to improve the road driving safety.

This paper addresses the problem of having a robot
tracking a ball and following it at an arbitrary
distance. The motivation to this particular application
was the development of new solutions and
behaviours to a Soccer Robot environment.

Every tracking procedure is divided in two main
blocks whose roles are: seeking the object and
following it. The first is an object detection problem,
and is solved through the processing of sensor data.
The second task is a pure control issue. This paper
focuses essentially on the second problem, i.e., the
controller design and implementation.

A classic controller can become highly complex
when a system is non-linear or with complex
dynamics. On the other hand, it is common to see
human operators taking care of complex control
tasks with good results and apparently without
difficulty. They do not know the mathematical model
of the system, and so the question that may be asked
is on the approach they take to solve the problem. In

an era where systems and its models get more and
more complex, increasing the difficulties of the
controllers design, simpler controllers, yet with
similar performance, are always welcome.

When driving a car, the driver does not have a model
for the distance to the front car, but has an idea of
range like «near» or «far». These concepts are not
binary-logic but fuzzy-logic instead. A simple set of
rules working on range and orientation concepts can
achieve the desired behaviour of the vehicle. This is
the principle of a fuzzy controller addressing target
tracking. In this paper, a fuzzy logic controller on
range and angle is presented to follow a moving
object at a certain distance.

The paper is organized as follows. Section 2 presents
an overview of fuzzy logic and its control model.
Section 3 reports the implementation done both in
MatLab environment and in the real world using a
Nomad Scout. The results are presented and
discussed in Section 4, while the conclusions are
drawn in Section 5.

2. OVERVIEW OF THE METHOD

A typical feedback control loop is represented in
Figure 1. A fuzzy logic controlled system [Bezdek,
1993] uses the same control topology, even though
the controller displays a special internal structure
represented in Figure 2, with three blocks: a

mailto:nunocastro,rodrigo.matias@clix.pt
mailto:rodrigo.matias@clix.pt

fuzzification module, a set of if-then rules and a
defuzzification unit [Custódio].

Fig. 1 – Typical control loop.

Fig. 2 – Internal structure of a fuzzy controller.

The fuzzification unit converts a quantified,
numerical, control variable in a qualitative value like
small, medium or large. These values cannot be
considered as disjoint sets, once the frontier between
each two is vague, fuzzy [von Altrock, 1995]. The
Figure 3 describes this result, applying fuzzy sets
[Zadeh, 1965] on a distance variable, as opposed to a
division of the distance value in classical, disjoint
sets.

Fig. 3 – Fuzzy sets (a) in comparison to classic sets (b).

The block of if-then rules gathers the knowledge
needed to successfully control the robot. With the

fuzzified input variables, this unit uses the Generalized

Modus Ponens rule to compute a qualitative output
result for the controller [Zadeh, 1991]. This block
plays a key role on the fuzzy controller operation as
its rules model the whole behaviour of the vehicle.

The defuzzification unit converts a qualitative, fuzzy
variable (e.g., small, large) in a quantitative,
numerical value. There are many defuzzification
methods. Among them, the centre-of-area method
[Custódio; Cardoso, et al., 1994; von Altrock, 1995]
was chosen to solve the problem presented in this
paper, since it has an easy-implementation and a fast
execution time.

3. IMPLEMENTATION

3.1 Fuzzy Controller Design

To solve this particular issue of the target tracking
problem a two-loop fuzzy controller was used, with
one control loop for distance correction to the target
and another loop for orientation correction. These
loops do not influence each other’s output: the
variables related with the distance between the robot
and the target produce a linear acceleration output
through the range control loop (and only through it),
while an angular acceleration results from (and only
from) the processing on angle inputs by the

orientation controller. This means that distance and
orientation angle to an object are considered to be
two separated phenomena when controlling a vehicle,
which is not completely true in the real world.
However, this is a good approximation given the
envisaged soccer application.

Fig. 4 – The effect of following an object with same motion at

different ranges on its orientation correction.

Figure 4 describes two situations of tracking an
object that differ on the initial distance to the target.
If the robot is correctly oriented to the target, the
tracking control resumes to a distance control. This is
the primary assumption made when implementing
this controller: the distance control is done
considering that the robot is always well oriented to
the target, making the range correction independent
of any angular variables. What happens when the
orientation has also to be corrected? Figure 4 shows
that, for a fixed object, the angle relative to the
vehicle longitudinal axis decreases as the distance to
it increases. When range d tends to infinity, the
orientation angle correction, θ, tends to zero.
However, similarly to a driver that steers only the
sufficient to compensate the perceived error,
regardless of the distance to the target, the
orientation control loop can have the same
behaviour, ignoring any range values to produce a
valid angular acceleration output for the robot.
Linear and angular accelerations are the outputs of
the two-loop fuzzy controller. These variables are
general and independent of the particular
characteristics of the vehicle under control. A
conversion block makes the linkage of the general
variables to the robot own state variables considering
the limitations as motor saturation or limited values
for acceleration. The implemented control system
block diagram is represented in Figure 5.

Fig. 5 – Block diagram of the target tracking fuzzy control system.

To compare the simulation results with those
obtained with a Nomad, the Robot block has been
modelled, using MatLab [The MathWorks, 2002], as
a differential-drive vehicle, i.e., the platform motion
is controlled from the angular velocities imposed on
the right and the left wheels of the robot, as follows:

V = R/2 (wr + wl) (1)
W = R/D (wr – wl) (2)

where V is the linear velocity of the robot, W the
angular velocity of the robot, R the wheels radius of
the vehicle, D the distance between wheels and wr, wl
the angular velocities of right and left wheels.

Restrictions have been imposed on the values of wr
and wl, namely a maximum value that leads to a
saturation phenomenon for values above this
maximum and a minimum value needed to move the
robot. The robot model is completed with the
inclusion of the motor dynamics of the two
controlled wheels of the vehicle.

The Conversion Block uses (1) and (2) to compute wr
and wl, the input state-variables of the robot, using
the linear and angular accelerations that have
resulted as output of the fuzzy controllers. However,
(1) and (2) relate velocities instead of accelerations.
Therefore, two integrators are needed at the
conversion block input to convert the linear and
angular accelerations into velocities.

The Camera and Image Processing Unit models a
camera placed in the robot front and performs the
image processing needed to extract, from acquired
data, the distance and orientation between the vehicle
and the target.

Fig. 6 – Image formation on the projective plane of a camera.

A representation on a projective plane has been used
to model the camera, as represented in Figure 6. The
camera is be characterized by a focus point, F, and a
projective plane, α, where the image is formed. The
focal distance d gives the range between F and α.
The object position relative to the camera focus and
its dimensions allow the estimation of the angles
θ1 and θ2. The limit points of the object projection on
α, P1 and P2, are then given by

P1 = d tg(θ1

) (3),
P2 = d tg(θ2

) (4).

To account for uncertainty, the camera model adds
10% noise to its output. Moreover, a delay element
that represents the time needed by the camera to
acquire an image and store it in memory is
considered.

The second part of this unit is the image processing
component. Knowing the focal distance d of the
camera (which generally means that the camera has
to be previously calibrated), the algorithm uses (3)
and (4) to obtain θ1 and θ2. The target dimensions are
then used in association with the computed angles to
determine the object distance to the focus. The
orientation of the target relative to the camera can be
obtained using θ1 and θ2

.

The fuzzy controller blocks presented in Figure 5
have the same internal structure as the one in Fig. 2.
The fuzzification unit of the controller On Distance
has two inputs, the range value to the target and the
range change rate.

The fuzzification of a variable can result from
different belonging functions, with different shapes
and therefore different mathematical models. Fig. 7
gives examples of functions that can be used in a
fuzzification procedure.

Fig. 7 – Different fuzzification functions.

Although there are many possible shapes for a
belonging level function, B, the form of the
particular function used does not influence in a
significant way the output result of a fuzzy
controller. Therefore, in this work, the fuzzification
of the variables uses linear functions, aiming at an
easy implementation and fast execution.

An important issue is the number of qualitative
levels that should be used to fuzzify an input
variable. A large number of fuzzy levels decreases
the controller performance and increases the
complexity of the implementation, while a small
numbers renders the controller inefficient. The ideal
number of levels generally sits between 3 and 5. In
this work we used the three-level decomposition on
variables that are strictly positive, like a range value,
and a five-level decomposition of variables that could
be assigned to both positive and negative values.

Fig. 8 – Fuzzification of range and range change rate values.

Figure 8 represents the decomposition in fuzzy levels
of the Fuzzy Controller On Distance inputs. The
division of the variables in 3 levels for distance and 5
levels for distance change rate leads to a set of 15 if-
then rules. These rules, shown on Table 1, were
obtained from the knowledge of a driver who wants
to keep a medium distance to an object moving in
front of him. In this table Pos. stands for Positive,
Neg. for Negative and Med. for Medium.

Table 1 – Implemented if-then rules for distance control to the
target.

 Distance Distance
C. Rate Linear

Acceleration
Small Neg., Big Neg, Big

Small Neg.,
Med Neg, Big

Small Zero Neg, Med
Small Pos, Med Neg, Med
Small Pos, Big Zero
Med Neg, Big Neg, Big

Med Neg,
Med Neg, Med

If

Med

&

Zero

Then

Zero

Med Pos, Me Pos, Med
Med Pos, Big Pos, Big
Big Neg, Big Zero

Big Neg,
Med Pos, Med

Big Zero Pos, Med
Big Pos, Med Pos, Big

Big

Pos, Big

Pos, Big

The if-then rules block computes a qualitative value
for the linear acceleration applying the Generalized
Modus Ponens to the above rules. The
defuzzification block converts this qualitative value
in a numerical value, using the centre-of-area
method. The Generalized Modus Ponens rule returns
a value in the interval [0, 1] for each qualitative level
of the linear acceleration as illustrated in Figure 9.

Fig. 9 – Defuzzification using the centre-of-area method.

The defuzzification operation finds the centre-of-
area, C, obtained applying the values given by the
Generalized Modus Ponens rule to each qualitative
level.

The inputs of the Fuzzy Controller On Orientation
block are the orientation angle between the robot and
the target and the orientation angle change rate. The
fuzzification method is the same used in the
controller on distance, but with 5 qualitative levels
for each variable. Figure 10 shows the division in
qualitative levels made for both angle and angle
change rate values.

Fig. 10 – Fuzzification of angle and angle change rate values.

With 5 qualitative levels for each variable, 25 if-then
rules are needed to cover all the possible combination
of variables. The rules in Table 2 were designed
based on common-sense criteria.

Table 2 – Implemented if-then rules for orientation correction of

the robot.

 Angle Angle
C. Rate Angular

Acceleration
Neg, Big Neg, Big Neg, Big
Neg, Big Neg,Med Neg, Big
Neg, Big Zero Neg, Big
Neg, Big Pos, Med Neg, Med
Neg, Big Pos, Big Zero
Neg,Med Neg, Big Neg, Big
Neg,Med Neg,Med Neg, Big
Neg,Med Zero Neg, Med
Neg,Med Pos, Med Zero
Neg,Med Pos, Big Pos, Med

Zero Neg, Big Neg, Big
Zero Neg,Med Neg, Med
Zero Zero Zero

If

Zero

&

Pos, Med

Then

Pos, Med

Zero Pos, Big Pos, Big
Pos, Med Neg, Big Neg, Med
Pos, Med Neg,Med Zero
Pos, Med Zero Pos, Med
Pos, Med Pos, Med Pos, Big
Pos, Med Pos, Big Pos, Big
Pos, Big Neg, Big Zero
Pos, Big Neg,Med Pos, Med
Pos, Big Zero Pos, Big
Pos, Big Pos, Med Pos, Big
Pos, Big Pos, Big

Pos, Big

As on the controller on distance, this if-then rules
block returns a qualitative output after applying the
Generalized Modus Ponens to the rules. The
qualitative value of the angular acceleration is then
converted in a numerical value using the same
defuzzification method that was applied on the
controller on distance, i.e., the centre-of-area method,
but changing their boundary values to produce an
angular acceleration compatible with the linear
acceleration.

The rules implemented both on Table 1 and Table 2
are based on non completely objective criteria, this
meaning that the achieved solution is not unique.
Other fuzzy controller designers can achieve success
in the target tracking task with different sets of rules.
Nevertheless, these sets will never be significantly
different from the ones presented in this paper.

3.2 Nomad Scout Following a Ball

The implementation on Nomad Scout [Nomadic
Technologies, 1997] was done under a Soccer Robot
environment, using the tools designed by the IST
Soccer Robotics team, SocRob. These tools perform
an automatic image data processing, returning the
distance and the angle between the robot and the
ball. The controller was implemented using the
C/C++ environment, whose similarity with the
MatLab programming previously used for simulation
purposes, simplified its implementation.

Fig. 11 – Nomad Scout tracking a ball.

Figure 11 shows the Nomad Scout that was used on
this work. It has a camera with omni-directional
mirror and a unidirectional camera oriented to the
robot front. The first camera has the advantage of
being able to see the target wherever it is. However,
it has low precision and requires a complex, and thus
slower, image processing when compared with a
unidirectional camera.

The front camera is fast and accurate after being
adjusted. It has, however, the drawback of being only
able to see objects in front of the robot. Both cameras

have been used, in an attempt to avoid each camera
limitations. In a first stage, the front camera is used,
since its accuracy and speed are desirable to have a
good performance of the system. If the target object
is not detected using the front camera, the system
tries to find it using the slower, inaccurate, omni-
directional camera.

This procedure improves the robot task of tracking
an object, since it combines the best characteristics
of both cameras, resulting on a vision system with
good accuracy and fewer gaps of «blindness» of the
robot relative to the object.

4. EXPERIMENTS

Several experiments have been conducted to test
different aspects of the implemented control system.
Subsections 4.1 and 4.2 report MatLab simulation
results and results obtained with the Nomad robot,
respectively. On the simulation results, the controller
was tested when tracking steady and moving targets.
The controller robustness was also tested on
parameter change of the system model, namely its
kinematics constraints, the sampling time used and
the control loop delay.

The tests done with Nomad aimed, essentially, at
providing a confirmation of the theoretical results
achieved at the simulation level.

4.1 Simulation Results

All the simulation tests consider a tracking distance
to the target of 2 meters and a tracking angle to the
target of zero degrees, aiming at having the robot
following an object and always oriented to it. All
experiments, except those concerning the effects of
the sampling time change on system performance,
used a sampling time of 100ms.

Fig. 12-a) Behaviour of the ideal robot facing the steady reference

(3, 2) [m].

The first experiment obtained the controller step
response for ideal conditions (no noise, null-delay of
the camera and ideal motor response). This
corresponds to having the robot following a steady
target located at a distance and orientation to the
vehicle different from their default values. Figure 12-
a) describes the movement of the robot, while
Figure12-b) gives the time-related range and angle
correction of it (and their change rates).

Fig. 12-b) Time response of the ideal robot on range and angle

correction facing the steady target.

As it can be seen, the ideal system is well controlled
by the implemented fuzzy controller. The system
behaviour is underdumped on both control loops,
which was expected since the controller is based on
human reaction.

The same experiment was performed with a model
nearer to real, i.e., with the inclusion of motor
saturation at 1m/s, a motor deadzone for velocities
under 2cm/s and camera noise of 10% added to an
output delay of 50ms. This camera delay corresponds
to the time interval required for the image acquisition
and storage in memory. The results are shown in
Figures 13-a) and 13-b).

Fig. 13-a) Behaviour of the robot facing the steady reference (3, 2)

[m], with 50ms of camera delay, noise level of 10%,
motor saturation at 1m/s and motor deadzone below
2cm/s.

Fig. 13-b) Time response of the robot on range and angle

correction facing the steady target.

The main difference between the two experiments is
the longer time interval necessary to stabilize the
robot posture. This is due to the camera delay and its
noise. However, this kind of behaviour is not

particular to the fuzzy controller. Noise and delay on
the control loop affects all controller types (classic
and non classic), in a similar way.

When tracking non-steady targets, the fuzzy
controller kept a good performance. An example is
presented in Figures 14-a) and 14-b), which has been
simulated with the same system parameters as the
experiment above (delay = 50ms, noise level of 10%,
saturation at 1m/s and dead-zone below 2cm/s) and a
target (red) moving at a medium velocity of 20cm/s
and a maximum of 50cm/s:

Fig. 14-a) Behaviour of the robot (blue) facing an arbitrary

trajectory of the target (red).

Fig. 14-b) Time response of the robot on range and angle

correction facing the target trajectory.

The robot was able to track and follow the target,
even when the last one suffers abrupt changes of
direction, as the 90 degree turns represented in
Figure 14-a). The system limitations, namely the
motor saturation, motor deadzone, camera delay and
noise, have not influenced in a significant way the
success of the target following task. The controller
was tested with many other target trajectories having
similar results, this supporting the idea that the fuzzy
controller has good performance on a system with
the parameters and limitations considered.

When following a target at a certain distance,
different from zero, the robot and the target
trajectories are not necessarily the same. This was
already seen in the previous experiment, but the best
way of displaying this behaviour is the example
given in Figure 15.

Following a target that moves in a circumference
centred on the robot with radius equal to the default
following distance makes the vehicle spin around
itself, instead of moving on the circumference after

the target, at 2 meters of it. However, the robot is
always at the default target distance, keeping intact
the property of following the target object.

Fig. 15 – Different robot and target trajectories maintaining the

property of following the target.

Another result to be achieved is the robustness of the
implemented controller on parameter change.
Maintaining the whole model unchanged, the value
of the wheels radius and the distance between wheels
was modified by 10%. To maximize the variation
induced on the system by these parameters, it was
added 10% to the wheels radius and 10% was
subtracted to the distance between wheels. The
results, following the same target of Figure 14-a), are
shown in Figures 16-a) and 16-b):

Fig. 16-a) Behaviour of the robot (blue) facing a target trajectory

(red), having 10% change on its kinematics parameters.

Fig. 16-b) Time response of the robot on range and angle

correction facing the target trajectory.

Comparing Figures 16-a) and 14-a), it can be seen
that the behaviour of the robot in the two situations is
almost the same. The results of Figure 16-b) show
that the controller still manages to drive the robot
after the target, having however a slightly longer
delay on point stabilization at the end of the robot

trajectory than that in Figure 14-b). Nevertheless, the
example shown above supports the idea that the
implemented fuzzy controller is robust to parameter
variation as great as 10%, which can be considered a
good result, since it gives a range of tolerance in
robot measurements of centimetres in some cases.

The robustness of the controller has also been tested
when changing the sampling time of the system and
its camera delay value. Figures 17-a) and 17-b)
reflect the results obtained with a camera delay and a
sampling time 20% greater than the original ones
(i.e., a camera delay of 60ms and a sampling time of
120ms):

Fig. 17-a) Behaviour of the robot (blue) facing a target trajectory

(red), with a sampling time of 120ms and a camera
delay of 60ms.

Fig. 17-b) Time response of the robot on range and angle

correction.

Following the same trajectory as shown in Figures
14-a) and 16-a), the robot successfully performs its
task, tracking the target with minimal differences on
the trajectory made when compared with the results
of 14-a) and 16-a). It is only in Figure 17-b) that is
shown the main difference of the robot behaviour
when compared with the previous ones: the existence
of a bigger oscillation on the values of distance and
angle between the robot and the target during its
control.

This effect gets worse when the sampling time and
the camera delay values increase. As in any classical
control system, these parameters are critical for
system stability and performance. To evaluate how
much these parameters could influence the operation
of the controller, a last experiment was conducted,
simulating the system with the sampling time and the
camera delay values doubled. The results are
displayed in Figures 18-a) and 18-b), changing the
sampling time of the system to 200ms and the
camera delay to 100ms.

Fig. 18-a) Behaviour of the robot (blue) facing a target trajectory

(red), with a sampling time of 200ms and a camera
delay of 100ms.

Fig. 18-b) Time response of the robot on range and angle

correction.

As seen in Figure 18-a), the resulting movement of
the robot is completely different from the previous
ones, being much more inaccurate. In Figure 18-a),
the vehicle does not stabilize at the end of the target
trajectory, staying in an oscillation state instead. This
behaviour is confirmed by Figure 18-b), where both
distance and angle from the robot to the target have a
non-attenuated oscillatory behaviour. The sampling
time and the camera delay values chosen in this
experiment bring the system to a critical state of
stability, very close to instability.

When simulating the system with values above the
200ms for sampling time and 100ms for camera
delay, the robot loses the ability to successfully track
a target, and the system becomes unstable.

4.2 Results obtained with Nomad

The implemented controller is tested on a real robot.
A Nomad Scout was used to track and follow an
orange football ball. When testing the fuzzy
controller with the Nomad, some difficulties have
been experienced, which essentially result from the
large sampling time used by the robot. The image
processing proved to be very time-consuming
compared with the control algorithm, pushing up the
sampling time to values of about 200ms, which is not
suitable to track successfully quick targets like a
moving ball in a football game, as seen in the
simulation results, Figures 18-a) and 18-b).

Furthermore, the image processing algorithm
revealed a high-sensibility to light conditions, this
yielding gaps of «blindness» of the robot when

following the target, making him stop until the ball is
seen again.

With good light conditions and a slow moving target,
the fuzzy controller showed good performance,
similar to that obtained in the simulated
environment. When tracking a still ball (steady-state
behaviour), it was seen that the robot did not stay
still after reaching the desired range and angle to the
target, having small movements around these values
instead. This was due to the camera noise, which
caused a reasonable variation in the measurement of
range and angle, and the sampling time. Nevertheless,
given the robot limitations, it can be considered that
the fuzzy controller had fine performance and proved
to be robust both in simulation and in real operation,
accomplishing the mission for which it was
designed. The experiments made on Nomad are
documented on video and available to anyone that
requests them to the authors.

5. CONCLUSIONS

The results obtained prove that there is an effective
alternative to a classical controller on tasks like
target tracking by a mobile robot. A simple
controller, based on a set of few if-then rules and
using the fuzzy logic concept can take care of
systems whose complexity or lack of model linearity
could bring a big headache to a classical controller
designer. However, this method has to be used
wisely, once there are no stability criteria to apply on
a fuzzy controller. The rules and the fuzz/defuzz
functions usually match the common sense or the
knowledge of an operator, so caution is required
when implementing these parts of the controller to
correctly reproduce the operator’s actions, or else the
behaviour of the controlled system can be completely
unexpected.

As usual, the sampling time of the system is
determinant to its performance. This is a key issue
when working with Nomad, whose sampling time is
about 200ms, a value that starts to be huge to get
good results on tracking quick targets. The camera
delay was another conditioning factor of the system
performance.

The fuzzy controller proved to be robust even when
the physical system parameters differ from the
original ones.

A great advantage of the designed fuzzy controller is
the fact of being completely independent of the
system topology. The controller outlets are the linear
and angular accelerations of the mobile robot, which
are independent of the system is being controlled.
The link between the controller and the system is the
conversion block that transforms the controller
outputs into the input variables of the robot. So, to
control in the same way a robot that has a different
kinematics, the only modification to be done is the
conversion block instead of changing the whole
controller. This has the additional advantage of
making possible the inclusion of the non-linear
limitations of the vehicle, like motor saturation,

directly on the conversion block, maximizing the
controller performance to each particular robot.

The partitioning of the controller in two control
loops, one for distance control, the other for angle
correction, simplifies the type and the number of
rules, treating each one of them independently and
only linking those in the conversion block.

In future developments it is suitable to improve the
range and angle estimation given by image
processing, as also decreasing the sampling time of
the system and delay of the camera values. Except
for the last problem, which can only be improved by
hardware upgrade, the other improvements can be
achieved increasing the quality of the image
segmentation algorithm and its speed. These
developments will improve the system performance,
allowing the tracking of faster targets with smaller
oscillation and increasing the stability margin of the
system.

ACKNOWLEDGMENTS

The authors of this paper want to thank the whole ISocRob
Project team, in particular Pedro Pinheiro and Hugo
Costelha.

Work supported by the FCT “Programa Operacional
Sociedade de Informação (POSI)” in the frame of QCA III.

REFERENCES

Zadeh, L., Fuzzy Sets, In Inf. Control, 8, 338-353, 1965.
Zadeh, L., Fuzzy Logic and the Calculus of Fuzzy If-

-Then Rules, OMRON Technics, Vol. 31, No. 4,
316-320, 1991.

Custódio, L. M. M., Fundamentos de Inteligência
Artificial – Acetatos, Instituto Superior Técnico.

Cardoso, F., Fontes, F., Pais, C., Oliveira, P. and
Ribeiro, M. I., Fuzzy Logic Steering Controller
For a Guided Vehicle, Proceedings of the
MELECON-94, Mediterranean Electrotechnical
Conference, 1994, Antalya, Turkey.

von Altrock, C., Fuzzy Logic and NeuroFuzzy
Applications Explained, Prentice Hall,
Englewood Cliffs, NJ, 1995.

Bezdek, J. C., Fuzzy Models --- What are they, and
why?, IEEE Transactions on Fuzzy Systems,
Vol 1, 1-5, 1993.

Cox, Earl, The Seven Nouble Truths of Fuzzy Logic,
Computer Design, April 1992.

Nomadic Technologies, Nomad User’s Manual
1997.

The MathWorks, MatLab 6.5 Help Desk, 2002.

http://www.seattlerobotics.org/encoder/mar98/fuz/fli
ndex.html

http://www.aptronix.com/fuzzynet/index.htm

http://www.emsl.pnl.gov:2080/proj/neuron/fuzzy/wh
at.html

http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html
http://www.aptronix.com/fuzzynet/index.htm
http://www.emsl.pnl.gov:2080/proj/neuron/fuzzy/what.html
http://www.emsl.pnl.gov:2080/proj/neuron/fuzzy/what.html

	REFERENCES

