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Abstract: This paper presents an approach to solve the target-tracking problem using a 
two-loop fuzzy logic controller, one for range control to the target and the other for 
orientation correction. These loops are assembled in a conversion block, whose output 
links general variables as linear and angular accelerations to the particular state-variables 
of the robot, resulting on a low-cost and easy implementable controller. The method was 
tested in simulation and in a real platform, using a differential-drive Nomad Scout. Both 
have achieved success in the task of following the target even when the system kinematics 
parameters and the sampling time suffer changes in their nominal values. 
 
Keywords: fuzzy logic controller, target tracking, mobile robots, vision, differential 
topologies, Soccer Robotics, Nomad Scout. 

 
 

 
 

1. INTRODUCTION 
 

Target tracking is an important problem for a number 
of different applications that may benefit from the 
use of a mobile robot. Following an object at a given 
distance has application in several fields, namely in 
traffic control based on a «follow-the-leader» 
concept or in semi-automatic vehicles on an attempt 
to improve the road driving safety. 

This paper addresses the problem of having a robot 
tracking a ball and following it at an arbitrary 
distance. The motivation to this particular application 
was the development of new solutions and 
behaviours to a Soccer Robot environment. 

Every tracking procedure is divided in two main 
blocks whose roles are: seeking the object and 
following it. The first is an object detection problem, 
and is solved through the processing of sensor data. 
The second task is a pure control issue. This paper 
focuses essentially on the second problem, i.e., the 
controller design and implementation. 

A classic controller can become highly complex 
when a system is non-linear or with complex 
dynamics. On the other hand, it is common to see 
human operators taking care of complex control 
tasks with good results and apparently without 
difficulty. They do not know the mathematical model 
of the system, and so the question that may be asked 
is on the approach they take to solve the problem. In 

an era where systems and its models get more and 
more complex, increasing the difficulties of the 
controllers design, simpler controllers, yet with 
similar performance, are always welcome. 

When driving a car, the driver does not have a model 
for the distance to the front car, but has an idea of 
range like «near» or «far». These concepts are not 
binary-logic but fuzzy-logic instead. A simple set of 
rules working on range and orientation concepts can 
achieve the desired behaviour of the vehicle. This is 
the principle of a fuzzy controller addressing target 
tracking. In this paper, a fuzzy logic controller on 
range and angle is presented to follow a moving 
object at a certain distance. 

The paper is organized as follows. Section 2 presents 
an overview of fuzzy logic and its control model. 
Section 3 reports the implementation done both in 
MatLab environment and in the real world using a 
Nomad Scout. The results are presented and 
discussed in Section 4, while the conclusions are 
drawn in Section 5. 

 
 

2. OVERVIEW OF THE METHOD 
 

A typical feedback control loop is represented in 
Figure 1. A fuzzy logic controlled system [Bezdek, 
1993] uses the same control topology, even though 
the controller displays a special internal structure 
represented in Figure 2, with three blocks: a 
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fuzzification module, a set of if-then rules and a 
defuzzification unit [Custódio]. 

 
Fig. 1 – Typical control loop. 

 
Fig. 2 – Internal structure of a fuzzy controller. 

 

The fuzzification unit converts a quantified, 
numerical, control variable in a qualitative value like 
small, medium or large. These values cannot be 
considered as disjoint sets, once the frontier between 
each two is vague, fuzzy [von Altrock, 1995]. The 
Figure 3 describes this result, applying fuzzy sets 
[Zadeh, 1965] on a distance variable, as opposed to a 
division of the distance value in classical, disjoint 
sets. 

 
Fig. 3 – Fuzzy sets (a) in comparison to classic sets (b). 

The block of if-then rules gathers the knowledge 
needed to successfully control the robot. With the 

fuzzified input variables, this unit uses the Generalized 

Modus Ponens rule to compute a qualitative output 
result for the controller [Zadeh, 1991]. This block 
plays a key role on the fuzzy controller operation as 
its rules model the whole behaviour of the vehicle.  

The defuzzification unit converts a qualitative, fuzzy 
variable (e.g., small, large) in a quantitative, 
numerical value. There are many defuzzification 
methods. Among them, the centre-of-area method  
[Custódio; Cardoso, et al., 1994; von Altrock, 1995] 
was chosen to solve the problem presented in this 
paper, since it has an easy-implementation and a fast 
execution time. 

 
 

3. IMPLEMENTATION 
 
3.1 Fuzzy Controller Design 

To solve this particular issue of the target tracking 
problem a two-loop fuzzy controller was used, with 
one control loop for distance correction to the target 
and another loop for orientation correction. These 
loops do not influence each other’s output: the 
variables related with the distance between the robot 
and the target produce a linear acceleration output 
through the range control loop (and only through it), 
while an angular acceleration results from (and only 
from) the processing on angle inputs by the 

orientation controller. This means that distance and 
orientation angle to an object are considered to be 
two separated phenomena when controlling a vehicle, 
which is not completely true in the real world. 
However, this is a good approximation given the 
envisaged soccer application. 

 
Fig. 4 – The effect of following an object with same motion at 

different ranges on its orientation correction. 
 

Figure 4 describes two situations of tracking an 
object that differ on the initial distance to the target. 
If the robot is correctly oriented to the target, the 
tracking control resumes to a distance control. This is 
the primary assumption made when implementing 
this controller: the distance control is done 
considering that the robot is always well oriented to 
the target, making the range correction independent 
of any angular variables. What happens when the 
orientation has also to be corrected? Figure 4 shows 
that, for a fixed object, the angle relative to the 
vehicle longitudinal axis decreases as the distance to 
it increases. When range d tends to infinity, the 
orientation angle correction, θ, tends to zero. 
However, similarly to a driver that steers only the 
sufficient to compensate the perceived error, 
regardless of the distance to the target, the 
orientation control loop can have the same 
behaviour, ignoring any range values to produce a 
valid angular acceleration output for the robot. 
Linear and angular accelerations are the outputs of 
the two-loop fuzzy controller. These variables are 
general and independent of the particular 
characteristics of the vehicle under control. A 
conversion block makes the linkage of the general 
variables to the robot own state variables considering 
the limitations as motor saturation or limited values 
for acceleration. The implemented control system 
block diagram is represented in Figure 5. 

 
Fig. 5 – Block diagram of the target tracking fuzzy control system. 

 
To compare the simulation results with those 
obtained with a Nomad, the Robot block has been 
modelled, using MatLab [The MathWorks, 2002], as 
a differential-drive vehicle, i.e., the platform motion 
is controlled from the angular velocities imposed on 
the right and the left wheels of the robot, as follows: 

 
V = R/2 (wr + wl)   (1) 
W = R/D (wr – wl)   (2) 

 



where V is the linear velocity of the robot, W the 
angular velocity of the robot,  R the wheels radius of 
the vehicle, D the distance between wheels and wr, wl 
the angular velocities of right and left wheels. 

Restrictions have been imposed on the values of wr 
and wl, namely a maximum value that leads to a 
saturation phenomenon for values above this 
maximum and a minimum value needed to move the 
robot. The robot model is completed with the 
inclusion of the motor dynamics of the two 
controlled wheels of the vehicle. 

The Conversion Block uses (1) and (2) to compute wr 
and wl, the input state-variables of the robot, using 
the linear and angular accelerations that have 
resulted as output of the fuzzy controllers. However, 
(1) and (2) relate velocities instead of accelerations. 
Therefore, two integrators are needed at the 
conversion block input to convert the linear and 
angular accelerations into velocities. 

The Camera and Image Processing Unit models a 
camera placed in the robot front and performs the 
image processing needed to extract, from acquired 
data, the distance and orientation between the vehicle 
and the target. 

 
Fig. 6 – Image formation on the projective plane of a camera. 

A representation on a projective plane has been used 
to model the camera, as represented in Figure 6. The 
camera is be characterized by a focus point, F, and a 
projective plane, α, where the image is formed. The 
focal distance d gives the range between F and α. 
The object position relative to the camera focus and 
its dimensions allow the estimation of the angles 
θ1 and θ2. The limit points of the object projection on 
α, P1 and P2, are then given by 

P1 = d tg(θ1 

)    (3), 
P2 = d tg(θ2 

)    (4). 

To account for uncertainty, the camera model adds 
10% noise to its output. Moreover, a delay element 
that represents the time needed by the camera to 
acquire an image and store it in memory is 
considered. 

The second part of this unit is the image processing 
component. Knowing the focal distance d of the 
camera (which generally means that the camera has 
to be previously calibrated), the algorithm uses (3) 
and (4) to obtain θ1 and θ2. The target dimensions are 
then used in association with the computed angles to 
determine the object distance to the focus. The 
orientation of the target relative to the camera can be 
obtained using θ1 and θ2 

. 

The fuzzy controller blocks presented in Figure 5 
have the same internal structure as the one in Fig. 2. 
The fuzzification unit of the controller On Distance 
has two inputs, the range value to the target and the 
range change rate.  

The fuzzification of a variable can result from 
different belonging functions, with different shapes 
and therefore different mathematical models. Fig. 7 
gives examples of functions that can be used in a 
fuzzification procedure. 

 
Fig. 7 – Different fuzzification functions. 

 
Although there are many possible shapes for a 
belonging level function, B, the form of the 
particular function used does not influence in a 
significant way the output result of a fuzzy 
controller. Therefore, in this work, the fuzzification 
of the variables uses linear functions, aiming at an 
easy implementation and fast execution. 

An important issue is the number of qualitative 
levels that should be used to fuzzify an input 
variable. A large number of fuzzy levels decreases 
the controller performance and increases the 
complexity of the implementation, while a small 
numbers renders the controller inefficient. The ideal 
number of levels generally sits between 3 and 5. In 
this work we used the three-level decomposition on 
variables that are strictly positive, like a range value, 
and a five-level decomposition of variables that could 
be assigned to both positive and negative values. 
 

 
Fig. 8 – Fuzzification of range and range change rate values. 

 
Figure 8 represents the decomposition in fuzzy levels 
of the Fuzzy Controller On Distance inputs. The 
division of the variables in 3 levels for distance and 5 
levels for distance change rate leads to a set of 15 if-
then rules. These rules, shown on Table 1, were 
obtained from the knowledge of a driver who wants 
to keep a medium distance to an object moving in 
front of him. In this table Pos. stands for Positive, 
Neg. for Negative and Med. for Medium. 
 

Table 1 – Implemented if-then rules for distance control to the 
target. 

 Distance  Distance 
C. Rate  Linear 

Acceleration 
Small Neg., Big Neg, Big 

Small Neg., 
Med Neg, Big 

Small Zero Neg, Med 
Small Pos, Med Neg, Med 
Small Pos, Big Zero 
Med Neg, Big Neg, Big 

Med Neg, 
Med Neg, Med 

If 

Med 

& 

Zero 

Then 

Zero 



Med Pos, Me Pos, Med 
Med Pos, Big Pos, Big 
Big Neg, Big Zero 

Big Neg, 
Med Pos, Med 

Big Zero Pos, Med 
Big Pos, Med Pos, Big 

 

Big 

 

Pos, Big 

 

Pos, Big 
      

 
The if-then rules block computes a qualitative value 
for the linear acceleration applying the Generalized 
Modus Ponens to the above rules. The 
defuzzification block converts this qualitative value 
in a numerical value, using the centre-of-area 
method. The Generalized Modus Ponens rule returns 
a value in the interval [0, 1] for each qualitative level 
of the linear acceleration as illustrated in Figure 9. 
 

 
Fig. 9 – Defuzzification using the centre-of-area method. 

 
The defuzzification operation finds the centre-of-
area, C, obtained applying the values given by the 
Generalized Modus Ponens rule to each qualitative 
level. 

The inputs of the Fuzzy Controller On Orientation 
block are the orientation angle between the robot and 
the target and the orientation angle change rate. The 
fuzzification method is the same used in the 
controller on distance, but with 5 qualitative levels 
for each variable. Figure 10 shows the division in 
qualitative levels made for both angle and angle 
change rate values. 
 

 
Fig. 10 – Fuzzification of angle and angle change rate values. 

 
With 5 qualitative levels for each variable, 25 if-then 
rules are needed to cover all the possible combination 
of variables. The rules in Table 2 were designed 
based on common-sense criteria. 
 
Table 2 – Implemented if-then rules for orientation correction of 

the robot. 

 Angle  Angle 
C. Rate  Angular 

Acceleration 
Neg, Big Neg, Big Neg, Big 
Neg, Big Neg,Med Neg, Big 
Neg, Big Zero Neg, Big 
Neg, Big Pos, Med Neg, Med 
Neg, Big Pos, Big Zero 
Neg,Med Neg, Big Neg, Big 
Neg,Med Neg,Med Neg, Big 
Neg,Med Zero Neg, Med 
Neg,Med Pos, Med Zero 
Neg,Med Pos, Big Pos, Med 

Zero Neg, Big Neg, Big 
Zero Neg,Med Neg, Med 
Zero Zero Zero 

If 

Zero 

& 

Pos, Med 

Then 

Pos, Med 

Zero Pos, Big Pos, Big 
Pos, Med Neg, Big Neg, Med 
Pos, Med Neg,Med Zero 
Pos, Med Zero Pos, Med 
Pos, Med Pos, Med Pos, Big 
Pos, Med Pos, Big Pos, Big 
Pos, Big Neg, Big Zero 
Pos, Big Neg,Med Pos, Med 
Pos, Big Zero Pos, Big 
Pos, Big Pos, Med Pos, Big 
Pos, Big Pos, Big 

 

Pos, Big 
      

 
As on the controller on distance, this if-then rules 
block returns a qualitative output after applying the 
Generalized Modus Ponens to the rules. The 
qualitative value of the angular acceleration is then 
converted in a numerical value using the same 
defuzzification method that was applied on the 
controller on distance, i.e., the centre-of-area method, 
but changing their boundary values to produce an 
angular acceleration compatible with the linear 
acceleration. 

The rules implemented both on Table 1 and Table 2 
are based on non completely objective criteria, this 
meaning that the achieved solution is not unique. 
Other fuzzy controller designers can achieve success 
in the target tracking task with different sets of rules. 
Nevertheless, these sets will never be significantly 
different from the ones presented in this paper. 
 
3.2 Nomad Scout Following a Ball 

The implementation on Nomad Scout [Nomadic 
Technologies, 1997] was done under a Soccer Robot 
environment, using the tools designed by the IST 
Soccer Robotics team, SocRob. These tools perform 
an automatic image data processing, returning the 
distance and the angle between the robot and the 
ball. The controller was implemented using the 
C/C++ environment, whose similarity with the 
MatLab programming previously used for simulation 
purposes, simplified its implementation. 

 
Fig. 11 – Nomad Scout tracking a ball. 

 

Figure 11 shows the Nomad Scout that was used on 
this work. It has a camera with omni-directional 
mirror and a unidirectional camera oriented to the 
robot front. The first camera has the advantage of 
being able to see the target wherever it is. However, 
it has low precision and requires a complex, and thus 
slower, image processing when compared with a 
unidirectional camera. 
 
The front camera is fast and accurate after being 
adjusted. It has, however, the drawback of being only 
able to see objects in front of the robot. Both cameras 



have been used, in an attempt to avoid each camera 
limitations. In a first stage, the front camera is used, 
since its accuracy and speed are desirable to have a 
good performance of the system. If the target object 
is not detected using the front camera, the system 
tries to find it using the slower, inaccurate, omni-
directional camera. 
 
This procedure improves the robot task of tracking 
an object, since it combines the best characteristics 
of both cameras, resulting on a vision system with 
good accuracy and fewer gaps of «blindness» of the 
robot relative to the object. 
 
 

4. EXPERIMENTS 
 

Several experiments have been conducted to test 
different aspects of the implemented control system. 
Subsections 4.1 and 4.2 report MatLab simulation 
results and results obtained with the Nomad robot, 
respectively. On the simulation results, the controller 
was tested when tracking steady and moving targets. 
The controller robustness was also tested on 
parameter change of the system model, namely its 
kinematics constraints, the sampling time used and 
the control loop delay. 

The tests done with Nomad aimed, essentially, at 
providing a confirmation of the theoretical results 
achieved at the simulation level. 
 
4.1 Simulation Results 

All the simulation tests consider a tracking distance 
to the target of 2 meters and a tracking angle to the 
target of zero degrees, aiming at having the robot 
following an object and always oriented to it. All 
experiments, except those concerning the effects of 
the sampling time change on system performance, 
used a sampling time of 100ms. 

 
Fig. 12-a) Behaviour of the ideal robot facing the steady reference 

(3, 2) [m]. 

The first experiment obtained the controller step 
response for ideal conditions (no noise, null-delay of 
the camera and ideal motor response). This 
corresponds to having the robot following a steady 
target located at a distance and orientation to the 
vehicle different from their default values. Figure 12-
a) describes the movement of the robot, while 
Figure12-b) gives the time-related range and angle 
correction of it (and their change rates). 
 

 
Fig. 12-b) Time response of the ideal robot on range and angle 

correction facing the steady target. 

As it can be seen, the ideal system is well controlled 
by the implemented fuzzy controller. The system 
behaviour is underdumped on both control loops, 
which was expected since the controller is based on 
human reaction. 

The same experiment was performed with a model 
nearer to real, i.e., with the inclusion of motor 
saturation at 1m/s, a motor deadzone for velocities 
under 2cm/s and camera noise of 10% added to an 
output delay of 50ms. This camera delay corresponds 
to the time interval required for the image acquisition 
and storage in memory. The results are shown in 
Figures 13-a) and 13-b). 

 
Fig. 13-a) Behaviour of the robot facing the steady reference (3, 2) 

[m], with 50ms of camera delay, noise level of 10%, 
motor saturation at 1m/s and motor deadzone below 
2cm/s. 

 
Fig. 13-b) Time response of the robot on range and angle 

correction facing the steady target. 
 
The main difference between the two experiments is 
the longer time interval necessary to stabilize the 
robot posture. This is due to the camera delay and its 
noise. However, this kind of behaviour is not 



particular to the fuzzy controller. Noise and delay on 
the control loop affects all controller types (classic 
and non classic), in a similar way. 

When tracking non-steady targets, the fuzzy 
controller kept a good performance. An example is 
presented in Figures 14-a) and 14-b), which has been 
simulated with the same system parameters as the 
experiment above (delay = 50ms, noise level of 10%, 
saturation at 1m/s and dead-zone below 2cm/s) and a 
target (red) moving at a medium velocity of 20cm/s 
and a maximum of 50cm/s: 

 
Fig. 14-a) Behaviour of the robot (blue) facing an arbitrary 

trajectory of the target (red). 
 

 
Fig. 14-b) Time response of the robot on range and angle 

correction facing the target trajectory. 
 

The robot was able to track and follow the target, 
even when the last one suffers abrupt changes of 
direction, as the 90 degree turns represented in 
Figure 14-a). The system limitations, namely the 
motor saturation, motor deadzone, camera delay and 
noise, have not influenced in a significant way the 
success of the target following task. The controller 
was tested with many other target trajectories having 
similar results, this supporting the idea that the fuzzy 
controller has good performance on a system with 
the parameters and limitations considered. 

When following a target at a certain distance, 
different from zero, the robot and the target 
trajectories are not necessarily the same. This was 
already seen in the previous experiment, but the best 
way of displaying this behaviour is the example 
given in Figure 15.  

Following a target that moves in a circumference 
centred on the robot with radius equal to the default 
following distance makes the vehicle spin around 
itself, instead of moving on the circumference after 

the target, at 2 meters of it. However, the robot is 
always at the default target distance, keeping intact 
the property of following the target object. 

 
Fig. 15 – Different robot and target trajectories maintaining the 

property of following the target. 

 

Another result to be achieved is the robustness of the 
implemented controller on parameter change. 
Maintaining the whole model unchanged, the value 
of the wheels radius and the distance between wheels 
was modified by 10%. To maximize the variation 
induced on the system by these parameters, it was 
added 10% to the wheels radius and 10% was 
subtracted to the distance between wheels. The 
results, following the same target of Figure 14-a), are 
shown in Figures 16-a) and 16-b): 

 
Fig. 16-a) Behaviour of the robot (blue) facing a target trajectory 

(red), having 10% change on its kinematics parameters. 

 
Fig. 16-b) Time response of the robot on range and angle 

correction facing the target trajectory. 
 
Comparing Figures 16-a) and 14-a), it can be seen 
that the behaviour of the robot in the two situations is 
almost the same. The results of Figure 16-b) show 
that the controller still manages to drive the robot 
after the target, having however a slightly longer 
delay on point stabilization at the end of the robot 



trajectory than that in Figure 14-b). Nevertheless, the 
example shown above supports the idea that the 
implemented fuzzy controller is robust to parameter 
variation as great as 10%, which can be considered a 
good result, since it gives a range of tolerance in 
robot measurements of centimetres in some cases. 

The robustness of the controller has also been tested 
when changing the sampling time of the system and 
its camera delay value. Figures 17-a) and 17-b) 
reflect the results obtained with a camera delay and a 
sampling time 20% greater than the original ones 
(i.e., a camera delay of 60ms and a sampling time of 
120ms): 

 
Fig. 17-a) Behaviour of the robot (blue) facing a target trajectory 

(red), with a sampling time of 120ms and a camera 
delay of 60ms.  

 

 
Fig. 17-b) Time response of the robot on range and angle 

correction. 
 
Following the same trajectory as shown in Figures 
14-a) and 16-a), the robot successfully performs its 
task, tracking the target with minimal differences on 
the trajectory made when compared with the results 
of 14-a) and 16-a). It is only in Figure 17-b) that is 
shown the main difference of the robot behaviour 
when compared with the previous ones: the existence 
of a bigger oscillation on the values of distance and 
angle between the robot and the target during its 
control. 

This effect gets worse when the sampling time and 
the camera delay values increase. As in any classical 
control system, these parameters are critical for 
system stability and performance. To evaluate how 
much these parameters could influence the operation 
of the controller, a last experiment was conducted, 
simulating the system with the sampling time and the 
camera delay values doubled. The results are 
displayed in Figures 18-a) and 18-b), changing the 
sampling time of the system to 200ms and the 
camera delay to 100ms. 

 
Fig. 18-a) Behaviour of the robot (blue) facing a target trajectory 

(red), with a sampling time of 200ms and a camera 
delay of 100ms. 

 

 
Fig. 18-b) Time response of the robot on range and angle 

correction. 
 
As seen in Figure 18-a), the resulting movement of 
the robot is completely different from the previous 
ones, being much more inaccurate. In Figure 18-a), 
the vehicle does not stabilize at the end of the target 
trajectory, staying in an oscillation state instead. This 
behaviour is confirmed by Figure 18-b), where both 
distance and angle from the robot to the target have a 
non-attenuated oscillatory behaviour. The sampling 
time and the camera delay values chosen in this 
experiment bring the system to a critical state of 
stability, very close to instability. 

When simulating the system with values above the 
200ms for sampling time and 100ms for camera 
delay, the robot loses the ability to successfully track 
a target, and the system becomes unstable. 
 
4.2 Results obtained with Nomad 
 

The implemented controller is tested on a real robot. 
A Nomad Scout was used to track and follow an 
orange football ball. When testing the fuzzy 
controller with the Nomad, some difficulties have 
been experienced, which essentially result from the 
large sampling time used by the robot. The image 
processing proved to be very time-consuming 
compared with the control algorithm, pushing up the 
sampling time to values of about 200ms, which is not 
suitable to track successfully quick targets like a 
moving ball in a football game, as seen in the 
simulation results, Figures 18-a) and 18-b). 

Furthermore, the image processing algorithm 
revealed a high-sensibility to light conditions, this 
yielding gaps of «blindness» of the robot when 



following the target, making him stop until the ball is 
seen again. 

With good light conditions and a slow moving target, 
the fuzzy controller showed good performance, 
similar to that obtained in the simulated 
environment. When tracking a still ball (steady-state 
behaviour), it was seen that the robot did not stay 
still after reaching the desired range and angle to the 
target, having small movements around these values 
instead. This was due to the camera noise, which 
caused a reasonable variation in the measurement of 
range and angle, and the sampling time. Nevertheless, 
given the robot limitations, it can be considered that 
the fuzzy controller had fine performance and proved 
to be robust both in simulation and in real operation, 
accomplishing the mission for which it was 
designed. The experiments made on Nomad are 
documented on video and available to anyone that 
requests them to the authors. 
 

5. CONCLUSIONS 
 

The results obtained prove that there is an effective 
alternative to a classical controller on tasks like 
target tracking by a mobile robot. A simple 
controller, based on a set of few if-then rules and 
using the fuzzy logic concept can take care of 
systems whose complexity or lack of model linearity 
could bring a big headache to a classical controller 
designer. However, this method has to be used 
wisely, once there are no stability criteria to apply on 
a fuzzy controller. The rules and the fuzz/defuzz 
functions usually match the common sense or the 
knowledge of an operator, so caution is required 
when implementing these parts of the controller to 
correctly reproduce the operator’s actions, or else the 
behaviour of the controlled system can be completely 
unexpected. 

As usual, the sampling time of the system is 
determinant to its performance. This is a key issue 
when working with Nomad, whose sampling time is 
about 200ms, a value that starts to be huge to get 
good results on tracking quick targets. The camera 
delay was another conditioning factor of the system 
performance. 

The fuzzy controller proved to be robust even when 
the physical system parameters differ from the 
original ones. 

A great advantage of the designed fuzzy controller is 
the fact of being completely independent of the 
system topology. The controller outlets are the linear 
and angular accelerations of the mobile robot, which 
are independent of the system is being controlled. 
The link between the controller and the system is the 
conversion block that transforms the controller 
outputs into the input variables of the robot. So, to 
control in the same way a robot that has a different 
kinematics, the only modification to be done is the 
conversion block instead of changing the whole 
controller. This has the additional advantage of 
making possible the inclusion of the non-linear 
limitations of the vehicle, like motor saturation, 

directly on the conversion block, maximizing the 
controller performance to each particular robot. 

The partitioning of the controller in two control 
loops, one for distance control, the other for angle 
correction, simplifies the type and the number of 
rules, treating each one of them independently and 
only linking those in the conversion block. 

In future developments it is suitable to improve the 
range and angle estimation given by image 
processing, as also decreasing the sampling time of 
the system and delay of the camera values. Except 
for the last problem, which can only be improved by 
hardware upgrade, the other improvements can be 
achieved increasing the quality of the image 
segmentation algorithm and its speed. These 
developments will improve the system performance, 
allowing the tracking of faster targets with smaller 
oscillation and increasing the stability margin of the 
system. 
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