
MARKOV LOCALIZATION IN THE
ROBOCUP SIMULATION LEAGUE 1

Carla Penedo, João Pavão, Pedro Lima, M. I. Ribeiro

Instituto de Sistemas e Robótica
Instituto Superior Técnico

Av. Rovisco Pais, 1049-001 Lisboa, Portugal
{ccfp,jpp}@rnl.ist.utl.pt, {pal,mir}@isr.ist.utl.pt

Abstract: For mobile robots, localization is the process of updating the pose of
a robot, given information about its environment and the history of its sensor
readings. This paper describes an implementation of the Markov localization
method using a probability distribution across a fine-grained grid of robot poses
to globally localize a robot even in the presence of noise. In particular, we applied
this technique to self-localize a soccer player in the RoboCup Simulation League.
This simulation features a highly dynamic environment and inaccurate sensor
readings similar to real-world situations. We provide an experimental analysis of
this implementation and show results indicating that the robot is able to remain
relatively well localized in terms of position.

Keywords: Markov Localization, Belief, Grid-based Representation, RoboCup
Simulation League.

1. INTRODUCTION

A mobile robot must know where it is in order
to autonomously operate in its environment. The
ability to maintain a reasonable estimate of its
location with respect to its environment is a key
problem in mobile robotics and many distinct
localization techniques have emerged in recent
years.

In the context of mobile robots, the general prob-
lem of localization can be stated as follows: given
a model of the environment such as a grid-based
geometric description of landmarks or a topologi-
cal map of the environment, the aim is to estimate
the location of the robot within the environment
based on observations. These observations typi-
cally consist of a mixture of odometric informa-

1 Work supported by the FCT “Programa Operacional

Sociedade de Informação (POSI)” in the frame of QCA III.

tion about the robot movements and information
obtained from the robot proximity sensors or cam-
eras (Fox 1998).

In this paper we followed a Markov localiza-
tion approach that belongs to the family of the
global localization methods. Our implementation
assumes that initially, the robot (soccer player) is
given a map of its environment, but it does not
know where it is. Hence, it has to solve a difficult
localization problem, which is to estimate its po-
sition from scratch. The system described herein
follows a position probability grid approach which
provides accurate position estimates in a much
broader range of environments. In fact, it allows to
integrate raw (proximity) sensor readings instead
of only depending on abstract features.

The remainder of this paper is organized as fol-
lows. In the next section we introduce the basic
idea behind Markov localization and an imple-

Actas do Encontro Científico
3º Festival Nacional de Robótica - ROBOTICA2003
Lisboa, 9 de Maio de 2003.

mentation of its general scheme. In Section 3 we
present the environment in which the localization
technique is developed. To cope with the huge
state space, several optimizations were taken into
account. They are explained in Section 4. This
section also describes how our implementation
of Markov Localization was integrated into the
global architecture of the RoboCup simulation
system. The experimental results are shown in
Section 5. Finally, conclusions are drawn in Sec-
tion 6.

2. MARKOV LOCALIZATION

At any point in time, Markov localization main-
tains a position probability density (belief) over
the entire configuration space of the robot based
on an incoming stream of sensor data (observa-
tions) and an outcome of actions. This probabil-
ity framework employs multi-modal distributions
for the robot belief enabling the representation
of ambiguous situations by considering multiple
hypotheses in parallel. Such feature overcomes the
main disadvantage of local techniques as Kalman
filtering which rests on the restrictive assumption
that the position of the robot can be modelled by
a uni-modal Gaussian distribution.

2.1 Basics

Most techniques to position estimation follow a
probabilistic approach to deal with the uncer-
tainty inherent to the sensor data. In the context
of Markov localization, the robot position is mod-
elled by a random variable Lt representing the
robot true location (position and orientation) at
time t. The state space of this variable contains all
the locations considered for location estimation.
The robot belief at time t, more precisely, the
probability (density) that it assigns to the possi-
bility that its location at time t is l, is denoted by
Bel(Lt = l). This belief represents a probability
distribution over the entire space of L. Here, l is
a location in 〈x, y, θ〉 where x and y are Cartesian
coordinates and θ is the robot orientation.

The task of Markov localization is to update the
belief Bel(Lt = l) for any location l in the environ-
ment as the robot moves and senses by estimating
the posterior distribution over Lt conditioned on
all available data. The computation of such a
conditional probability grows exponentially with
the number of conditioning variables. Therefore,
two crucial independence assumptions were made
in order to efficiently update the state variable L:

i) Independence of actions – knowledge about
the position and the motion command ex-
ecuted at time (t − 1) is sufficient to pre-
dict the localization of the robot at time t,

meaning that all actions and positions prior
to (t− 1) provide no additional information
about its current position. This is known as
the Markov assumption.

ii) Independence of perceptions – perceptions
received at time t, revealing what the robot
sees, depend only on the state of the world
at that instant, Lt (Fox 1998).

2.2 Algorithm

The state represented by Lt is updated upon robot
motion (odometry readings from wheel revolution
count) and upon the arrival of sensor measure-
ments. Thus, localization consists of determining
the robot belief of being at a location l condi-
tioned on all previous actions an and percepts sn
(n = 1 . . . N) by assuming independence between
them (see (1)). Here, d is a set that comprises all
available sensor data (percepts and actions) (Fox
1998).

Bel(Lt = l) = P (Lt = l | d1,...,t) (1)

The general belief of being at location l at time t
by applying Bayes’ rule can be described by (2).

Bel(Lt = l) =
P (st | Lt = l, d1,...,t−1)P (Lt = l | d1,...,t−1)

P (st | d1,...,t−1)
(2)

In practice, it is too difficult to determine the
joint effect of all sensor and position integration
readings; instead, a recursive approximation is
assumed. The different terms of this equation are
computed in a loop that unfolds in two different
steps: update phase, when the most recent data is
a sensor measurement, and prediction phase if it
is an odometry reading.

Prediction Phase In (2), P (Lt = l | d1,...,t−1) can
be written as P (Lt = l | a1,...,t−1, s1,...,t−1), rep-
resenting the probability of the robot being at
pose l after action at−1 has been executed and
before any sensor measurement at time t has been
perceived. Conditioning this term on the previous
state, Lt−1, and considering Markov assumption
of independence of actions yields (3).

P (Lt = l | a1,...,t−1, s1,...,t−1) =∑
l′

(
P (Lt = l | Lt−1 = l′, at−1) ·
Bel(Lt− 1 = l′)

) (3)

The term P (Lt = l | Lt−1 = l′, at−1) is also called
motion model as it reflects the influence of the per-
formed actions in updating the state. It describes
the probability that action at−1, when executed at
l′, drives the robot to a different position l. It is

characterized by a normal distribution (4) where
σ(at−1) is the standard deviation considered given
(at−1).

P (Lt = l | Lt−1 = l′, at−1) =

1
σ(at−1)

√
2π

e
− (| l−l′ | − at−1)2

2σ2(at−1)
(4)

In most applications of Markov localization such
actions are measured by the robot wheel encoders.
However, the integration of incremental motion
over time (odometry) leads inevitably to the ac-
cumulation of errors increasing the uncertainty
in the robot pose. Typically, the inherent errors
are modelled as a normal distribution (Gaussian)
centered at the predicted position of the robot.

Update Phase The term P (st | Lt = l, d1,...,t−1)
in (2) can be simplified to P (st | Lt = l) by the
Markov assumption of independence of percep-
tions. It denotes the probability of measuring st if
the robot is at location l and is often referred to
as the sensor model. P (st | Lt = l) is also equiv-
alent to P (st | l) since the model of the sensor is
assumed to be static. The perception st can be a
distance measure or an abstract feature observed
in the environment. In our case, st will be a
distance to a known obstacle, more precisely, the
flags on the soccer field (see Section 3.1). Every
time a sensor detects an obstacle, the resulting
distribution is modelled by a Gaussian with mean
equal to the measured distance to this obstacle.
One single variance is not sufficient to describe the
precision of this mean, since the variance depends
on the distance of the closest flag and its angle.
So, the outcome of the visual sensor is modelled
by a two-dimensional normal distribution

P (x) =
1

2π | Σ |1/2
e−

1
2 (x−µ)′ Σ−1 (x−µ) (5)

where x represents the vector [d θ]′ of the random
variables distance and angle, which are character-
ized by the mean µ and the covariance matrix Σ.
This matrix can be easily determined by

Σ =
[
σd

2 ρσdσθ
ρσdσθ σθ

2

]
=
[
σd

2 0
0 σθ

2

]
(6)

The variances σd and σθ model the uncertainty
of the measured distance and angle, reflecting the
granularity of the discretization of L, the accuracy
of the world model and the precision of the sensor.
The correlation coefficient ρ is equal to 0 because
the two variables are assumed independent.

Normalization The denominator in (2) is con-
stant, since it does not depend on Lt. It acts as

a normalizer parameter αt ensuring that Bel(Lt)
sums up to 1 over all locations:

αt =
1

P (st | d1,...,t−1)
(7)

Initialization Bel(L0) reflects the initial knowl-
edge: it is centered on the current location when
the robot is aware of its starting position; oth-
erwise Bel(L0) is uniformly distributed to reflect
the global uncertainty of the robot. The latter is
the case in our work.

2.3 World Model

Our implementation of Markov localization uses a
fine-grained geometric discretization to represent
the position of the robot (Burgard et al. 1997).
A position probability grid is three-dimensional,
as each possible location l is defined by a tuple
〈x, y, θ〉 representing the robot position and ori-
entation.

The principle of the position probability grid ap-
proach ascribes to each cell of the grid the proba-
bility of the robot being located in that cell.

Grid Environment

θ

x

y

Bel(Lt = l)

Fig. 1. Transformation of grid coordinates into
field coordinates.

Figure 1 illustrates the structure of a position
probability grid and the correspondence between
grid and field positions in the RoboCup simulation
system. Each layer of the grid assigns all possible
poses of the robot with the same orientation.

Such a representation has the advantage that it
provides an accurate estimation of the location
of a robot. However, an evident disadvantage of
this method lies in the space required to store
the grid. To overcome this drawback, instead of
updating all the possible positions of the robot
every time it senses or acts we implemented an
optimization technique named Selective Update
(see Section 4.3.1).

3. ROBOCUP SIMULATION LEAGUE

The RoboCup Simulator League is based on the
RoboCup Simulator called the soccer server, a

physical soccer simulation system. All games are
visualized through the soccer monitor by display-
ing the field of the simulator on a computer screen.
Each player must be controlled by a completely
independent process.

The robotic soccer simulator is an instance of
a client/server application in which each client
communicates with the server via a UDP socket.
Each client is a separate process and connects
to the server using a given port through which
the messages are transferred. The server receives
the requests from the clients (actions they want
to perform) and updates the environment accord-
ingly. Furthermore, it supplies the sensory infor-
mation (aural, visual and body) to the players (see
Section 4.1).

A RoboCup agent has three distinct sensors: au-
ral, visual and body. The aural sensor is used for
communication among the several agents (referee,
coaches and other players). The visual sensor pro-
vides information about the field, like the distance
and direction to objects in the player’s current
field of view. The farther the sensed object is
from the agent the less precise the information
received by these two sensors will be. Finally, the
body sensor detects the “physical” status of the
player (stamina, speed and neck angle) (Noda et
al. 2001). In the sequel we will explore the body
and visual sensors as they are fundamental to
implement the Markov localization algorithm.

3.1 Visual Sensor Model

Each player automatically receives a message from
the server every 150ms describing what it sees.
The player’s normal view cone, i.e., its visible
sector, is 90 degrees wide.

Visual information arrives from the server in the
following basic format:

(see ObjName Distance Direction DistChng
DirChng BodyDir HeadDir)

where ObjName stands for the identifier of the
seen object (ball, players, flags, goal poles or
boundary lines) and the other parameters give
more detailed information about it.

Our implementation of the Markov localization
method takes advantage of the several existent
flags (represented by dots in Figure 2) placed
around the field. These marks can be easily rec-
ognized from the robot sensory input since they
have a fixed and known position relative to which
a robot can localize itself. The algorithm allows
the computation of P (st | l) based only on the
distance to the closest flag sensed as it is the
one that provides the most accurate information
(precision decreases with the distance).

Visual sensing provides a tremendous amount of
information about a robot environment and even
when used as the sole source of sensor data it can
result in a reasonable approximation to determine
the robot location.

Fig. 2. Flags and lines in the RoboCup Simulation
League (from (Noda et al. 2001, p.29)).

3.2 Motion Model

The body sensor reports automatically the “phys-
ical” status of the player (such as stamina and
speed) every 100ms. The robot speed is then inte-
grated to determine the distance it has travelled
from its last known position.

Despite odometry readings being only capable
of providing short-term accuracy, they are very
useful in complementing the visual data. In fact,
as the visual information arrives every 150ms,
odometry is crucial in order to update the robots
position in the time between visual sensing.

3.3 Noise Models

The server adds some white noise to all the
players’ sensory inputs and actions to simulate the
type of restrictions one would expect if the agents
were real robots.

3.3.1. Visual Sensor Noise Model The data val-
ues sent from the server to the visual sensor are
quantized and, consequently, the players cannot
know the exact position of the objects. In the
case of flags and field lines, the distance value is
quantized in the following manner:

d′ = Quant(exp(Quant(log(d), 0.01)), 0.1) (8)

where d and d′ are the exact and quantized
distances, respectively, and

Quant(V,Q) = dV/Qe ·Q (9)

For example, when a flag or line is about 10m
away, the maximum noise is about 10cm since the
quantize step of distance for landmarks is 0.01.

The maximum error associated to the measured
angles is 0.5o as this value is always rounded to
the nearest integer.

3.3.2. Motion Noise Model To better mimic the
movement of objects in the real world, a small
amount of noise is added to the movement of
objects and parameters of commands. This noise
is completely random and uniformly distributed
over the range [−rmax, rmax], where rmax is a
parameter that depends on the velocity of the
object as follows:

rmax = rand · vtobj (10)

where rand assumes different values depending on
the type of object (player or ball).

4. IMPLEMENTATION

4.1 Distributed Architecture

The RoboCup simulation system is comprised
by several independent processes that are not
necessarily running on the same host machine.
This is basically a distributed system controlled
by a central process — the soccer server — that
runs the whole simulation, sending and receiving
all the relevant information to and from all the
client programs connected to it. There are several
kinds of client programs that can connect to
the central soccer server. However, in this paper
we will only deal with soccer player and soccer
monitor clients (see Figure 3).

3D Monitor

Soccer
Server

Client

Display Data

Belief Grid

π
〈x, y, θ〉

Pe
rc

ep
tio

ns
Act

io
ns

Fig. 3. Global architecture of the distributed sys-
tem.

The soccer player is an agent program that com-
municates with the soccer server receiving per-
ceptions about the environment and sending the
actions it wants to perform. The soccer moni-
tor connects to the soccer server and receives
all the information necessary to correctly display
the state of the game and of all the players on
field. A third connection was added specifically for
this project that enables us to visualize the state
of the Markov localization algorithm running at

the heart of the soccer playing agent. The soccer
monitor connects to the soccer player in order to
receive a grid containing the beliefs of the Markov
localization algorithm.

4.2 3D Monitor

The soccer monitor used in the current project
was built upon the RoboCup Advanced 3D Mon-
itor (RA3DM) (Penedo et al. 2002), a real-time
3D monitor for the RoboCup Simulation League
which we had previously developed. This monitor
can be easily adapted to fit the visualization needs
at hand. For this project, we changed the com-
munications routines and the soccer field drawing
routines in the following manner:

Communications The third connection added
to the system enables us to display the state
of the probability grid directly on top of the
soccer field. The RA3DM connects to a special
port on the soccer player program that is to be
monitored. This soccer player — that is running
a Markov localization algorithm — will then
start to dump the contents of its beliefs grid
to RA3DM via a dedicated UDP socket.

Drawing The drawing routines were extended so
that the contents of the grid that is received
could be displayed on the soccer field. Each grid
cell is drawn in a shade of blue (instead of the
usual green used for the field) whose brightness
is directly proportional to the belief that the
robot is in that cell (see Figure 1). Moreover,
the cell with the highest belief at each time
step is distinguished with a red color. However,
only cells with a belief value above a certain
threshold are drawn so that the field doesn’t
become too cluttered (see Section 4.3.2). Each
one of these cells also features a bright circular
sector that indicates the range of orientations
with the highest belief.

Figure 4 illustrates the cells with the highest
probability of the Markov grid of a single player,
as seen through RA3DM.

4.3 Optimizations

Due to the large volume of information that a
grid-based Markov localization algorithm has to
process and send across a network, some opti-
mizations had to be integrated for the feasibil-
ity and efficiency of our implementation. So, we
considered two different ways to increase the al-
gorithm performance that will be discussed in the
upcoming sections. One of them is internal to the
localization algorithm and drastically reduces the
number of cells to process (Section 4.3.1). The
second one optimizes the amount of data to be

Fig. 4. Screen capture of a RA3DM window dis-
playing the state of the Markov probability
grid of the goalie.

transmitted over the network link used to send
the grid to the soccer monitor (Section 4.3.2).

4.3.1. Selective Update To obtain the most
accurate possible estimates of the robot posi-
tion, our Markov localization uses a fine-grained
discretization of the state space. The three-
dimensional grid depicted in Figure 5 represents
L, where each layer contains the probability of
all possible poses with the same orientation. This
kind of grid obviously results in a huge state space
that has to be maintained and updated through-
out the execution of the localization algorithm.
The basic Markov localization algorithm updates
each one of the elements of the grid at each iter-
ation, i.e., at each atomic movement of the robot
corresponding to a sensor or odometric reading.
This makes the algorithm unusable in practical
applications because it is not adequate for real-
time environments, as current computer speeds
cannot deal with such an amount of information
manipulation at this speed.

πn

π2

π1

x

y

θ

Fig. 5. Grid-based representation of the parti-
tioned state space.

To resolve this issue, we have implemented a
technique (presented in (Fox et al. 1999, pp.409–
411)) that largely improves the efficiency of the
computation of L. It enables the algorithm to
be applied on-line in a real time environment by
only updating the cells which seem to be relevant
— the ones that have their Belief value above a
certain threshold. The key idea of this method is
to take advantage of the fact that briefly after the
localization begins, the probability of the position

estimation rapidly concentrates around the true
position of the robot and decreases on the other
cells. By knowing this in advance, we can then
chose to not update cells that are unlikely to be
close to the true position and, consequently, have
a very low probability value of Bel(Lt = l).

We define a threshold ε and only the cells l for
which Bel(Lt = l) > ε are updated. In order
to maintain a consistent density over the whole
state space, the cells with a value below the
threshold ε are updated using an approximation of
P (st | l) by the a priori probability of measuring
st, which is determined by averaging P (st | l) over
all possible locations of the robot:

P̃ (st) =
∑
l

P (st | l)P (l) (11)

As P̃ (st) is independent of the current belief state,
it is built beforehand upon program initialization.
We build a table of values of P̃ (st) for a discretized
range of values of st. This is a very heavy and
time consuming calculation since the table has
dozens of entries, each of them being the result
of the average over all cells of the grid calculated
through (11). Each time a sensor measurement st
is received, the cells update is done according to

Bel(Lt=l) ←{
αt · P (st|l) ·Bel(Lt−1=l) if Bel(Lt−1=l)>ε

αt · P̃ (st) ·Bel(Lt−1=l) otherwise

(12)

To focus the computation on the relevant regions
of the state space, we partition it into several parts
π1, π2, . . . , πn which can be active or passive. A
part πi is active at time t when it contains at least
one location l with probability above the threshold
ε. Otherwise, it is passive.

When a partition πi becomes passive, a variable
βi(t) is used to accumulate the factors in (12) for
this partition until it becomes active again. The
variable βi(t) is initialized to 1 and subsequently
updated as:

βi(t+ 1) = αt · P̃ (st) · βi(t) (13)

When the partition πi becomes active again, we
multiply the probabilities of all its cells by the
value of βi(t) that has been accumulated so far.
We also keep track of the robot motion since the
time the partition became passive. The accumu-
lated motion is incorporated upon its activation.

Pmax
i is the maximum probability (or belief) value

of partition πi and is calculated by

Pmax
i = max

j
Bel(Lt = lj) , lj ∈ πi (14)

This value is stored when the partition changes its
state from active to passive. To determine if the

partition becomes active again it suffices to verify
whether condition Pmax

i · βi(t) > ε is met.

In our implementation, each partition consists of
all the possible robot locations that have equal
orientations. This enables us to mirror the changes
in the robot orientation in a highly efficient man-
ner. In fact, when the robot turns an angle γ, we
only need to change the orientation to which every
partition is associated (by γ) in order to reflect
such a rotation.

4.3.2. Selective Sending A regular match in
the RoboCup Simulation League usually involves
more than twenty five programs running at the
same time distributed among several networked
computers. The soccer server delivers perceptions
and receives actions from these programs ten
times per second. This poses a big burden on the
network which can get clogged up pretty easily. By
sending the Markov grid several times per second
we are loading the network even more. In our
implementation this problem was seriously taken
into account as we tried to minimize the network
bandwidth needed to deliver the probability grid
to the soccer monitor. To achieve this, the grid is
compressed and coded into a message that only
contains information about the cells with belief
values above a certain threshold. This message
will then be decoded and decompressed upon
reception by the monitor, that stores it in a form
suitable for a fast display.

5. EXPERIMENTAL RESULTS

Our implementation of the Markov localization
algorithm was written in the C language running
on the Linux operating system.

We used an angular resolution of 40 degrees in
the three experiments described in this section,
meaning that we divided the state space into
9 partitions. Moreover, we attempted to collect
results using different angular resolutions of 30,
20 and 10 degrees with 12, 18 and 36 partitions,
respectively. However, by increasing the number of
partitions and, consequently, defining a narrower
angle, the resulting errors were too high. This is
mainly due to the increasingly higher delay in
response times that the Markov algorithm faces
when the total number of cells is augmented. In
fact, the average time interval between every two
consecutive iterations of the Markov localization
algorithm for a 40 × 40 resolution is 0.226s for 9
partitions, 0.512s for 12 partitions and 0.860s for
18 partitions. These delays lead to a heavy loss
of odometric and perceptual (visual) information
(that are delivered to the player at fixed time
intervals), resulting in an increase in the error of
the location estimation as time goes by.

Table 1. Error measurements in experi-
ments with different grid resolutions.

Resolution 40×40 60×40 50×50

Cell Area (m) 2.63×1.70 1.75×1.70 2.10×1.36

Total Cells 14 400 21 600 22 500

Error posmean (m) 2.445 3.767 17.003

Error posmax (m) 62.242 62.511 62.537
Error θmean (o) 21.812 20.185 100.765

Error θmax (o) 108.000 159.000 176.000
Belmax

mean 0.157 0.041 0.007

The total number of grid cells and the dimensions
of each cell are shown in Table 1 for the three
resolutions that were tested using 9 partitions.
The error measurements in position estimation
were obtained by calculating the distance between
real and estimated positions (in meters), while the
orientation error was calculated as the difference
between the real and the estimated orientations
(in degrees). We present the mean and maxi-
mum errors (assumed Gaussian) for each type
of measurement. Additionally, Belmax

mean repre-
sents the mean value of the belief on the cell of the
estimated location over time, i.e., the cell with the
highest confidence.

Figure 6 plots the evolution of the position error
for some of the best localization results achieved
at each waypoint of the path followed by the
player. The average sample rates are 4.425 Hz,
2.387 Hz and 0.372 Hz for the 40×40, 60×40 and
50× 50 resolutions, respectively.

0

10

20

30

40

50

60

70

0 10 20 30 40 50Time (s)

Er
ro

r (
m

)

40x40

60x40

50x50

Fig. 6. Position error measured with different grid
resolutions.

By the analysis of the results we verify that both
types of errors (position and orientation) usually
increase significantly when the grid resolution is
higher. This was somewhat expected, as a growing
number of grid cells requires more calculations
and the system isn’t able to keep pace with the
RoboCup Simulator in this situation. Peaks in
localization errors occur mainly in two different
situations: at the beginning of the game, when
the robot is self-localizing for the first time —
bootstrap problem — which is particularly obvi-
ous in Figure 6, and when the robot scores a goal
and is moved instantly to its home position —

kidnapped robot problem. However, such errors
aren’t problematic since the robot easily recovers
from them (for example, after 1s it was able to
localize itself with a position error of 3.46m using
a grid of 40×40).

Generally, the Markov localization method keeps
the robot position error bound within very reason-
able limits. In experiments using a grid of 40×40
cells (2.63m×1.70m), the average error of 2.4450m
that was obtained is really good. Such results were
possible due to the high volume and diversity of
the received visual information and the fact that,
throughout all experiments, the player was always
alone in the field. This isn’t what really happens in
a normal soccer game, when the flags used in the
localization algorithm may be obstructed by the
other players in the field, resulting in a decrease
in the available perceptual information that can
be used.

As for the orientation estimation, the results ob-
tained weren’t so good, but they were somewhat
expected given the low resolution used in our
grids — each partition represents an interval of
40 degrees. The behavior of the player used in the
experiments (the decision making module) also
contributed to these results, as it executed lots of
turns in a short period of time. This issue doesn’t
allow the estimation of orientation to stabilize in
a more desirable manner. We also tried to change
the behavior of the tested player in order to make
it move and turn more gently, but then the re-
ceived perceptual information was less diverse and
led to even worse results.

The real path followed by the player and the
corresponding Markov estimation for the first
8.7s of a game using a grid of 40×40 (the same
experiment described earlier) is shown in Figure 7.
Its basic behavior consisted in moving forward
with the ball to the opponent’s goal and scoring
a goal. Although it isn’t possible to discern which
estimation corresponds to a certain position (real)
at a given moment, it provides an interesting
overview of the localization process.

-32

32

-52,5 52,5

X
 (m

)

Y (m)

Markov Estimation

Real Path

Home Position

Fig. 7. Real path and Markov estimation.

6. CONCLUSIONS

In this paper, we applied the Markov localiza-
tion method to self-localize a soccer player in
the RoboCup Simulation League. The results ob-
tained concerning the global position estimation
were very reasonable. However, we must stress
that in some tests, even considering the same reso-
lution, the error was slightly higher. Such discrep-
ancy takes place due to the completely random
nature of the noise added by the soccer server.

The main problem when implementing this algo-
rithm is the huge state space that is required.
We have also implemented some optimizations
techniques in order to cope with the dynamic en-
vironment of RoboCup. Nevertheless, this solves
the problem just to a certain extent, since we
still have limitations when choosing adequate grid
dimensions.

Odometry readings are usually quite helpful in im-
plementations of localization methods since they
are always available, as opposed to the sparser
availability of visual information. However, in the
RoboCup simulator odometry readings can be
computed every 100ms and visual information
is received every 150ms. This way, odometry is
only capable of slightly improving the estimates
between two perceptual data samples.

ACKNOWLEDGMENTS

This work was produced with the support of Prof.
Luis Custódio whose help and guidance was a
valuable contribution.

REFERENCES

Burgard, W., D. Fox and D. Henning (1997).
Fast grid-based position tracking for mo-
bile robots. In: KI - Kunstliche Intelligenz.
pp. 289–300.

Fox, D. (1998). Markov Localization: A Proba-
bilistic Framework for Mobile Robot Local-
ization and Navigation. PhD thesis. Univer-
sity of Bonn.

Fox, D., W. Burgard and S. Thrun (1999). Markov
localization for mobile robots in dynamic en-
vironments. Journal of Artificial Intelligence
Research 11, 391–427.

Noda, I., M. Chen, E. Foroughi, F. Heintz,
Z. Huang, S. Kapetanakis, K. Kostiadis,
J. Kummeneje, O. Obst, P. Riley, T. Steffens,
Y. Wang and X. Yin (2001). RoboCup Soccer
Server: Users Manual for Soccer Server Ver-
sion 7.07 and later.

Penedo, C., J. Pavão and P. Nunes (2002).
Robocup advanced 3D monitor. Technical re-
port. Instituto Superior Técnico.

