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Abstract

This paper describes the control of robot teams in

the framework of Hilbert spaces. The proposed par-

adigm develops in two levels: (i) single robot control

supported on a monotonic and non-expansive projec-

tion map de�ned on the con�guration space, and (ii)

team control supported on a supervision scheme over

a set of neighboring relationships among the team-

mates.

Each robot monitors its own neighboring relation-

ships for relevant changes, accounting both for the

distance among the robots and their relative motion,

and adapts its motion to the rest of the team using a

�nite state automaton supervisor.

Simulation results on teams of 2D holonomic and

cart robots are presented.

1 Introduction

This paper presents an approach to the control of

robot teams supported on basic tools from the geome-

try of Hilbert spaces. The paper is organized in three

main parts: (i) single robot control in the framework

of di�erential inclusions, (ii) team control in a hybrid

systems framework (with the continuous state veri-

fying a di�erential inclusion), and (iii) experimental

results.

In the framework of dynamical systems the i-th ro-

bot in a team with n members, moving in a con�gu-

ration space Qi = fqig, is represented by a dynamic

system _qi(t) = fi(qi(t); ui(t)), with initial condition

qi(0) = qi0 , i = 1; : : : ; n, t being the time and ui 2 Ui
the control vector1. When considered isolated from

the rest of the team, the synthesis of the ui that makes

the robot follow a reference path or move towards

a reference con�guration is a classical robot control

problem that have been widely studied, [7, 10, 15, 17].

For robot teams, approaches ranging from control the-

ory, [13, 18], to discrete event systems, [8], and arti�-

cial intelligence, [1, 4, 6, 12], have been considered.

�This work was supported by the FCT project
POSI/SRI/40999/2001 and Programa Operacional Sociedade

de Informa�c~ao (POSI) in the frame of QCA III.
1Without loosing generality, this model can simply be as-

sumed as the di�erential kinematics.

A large variety of single robot missions neither re-

quires exact path following nor that the robot reaches

a speci�c con�guration. Instead, the robot is required

to move within some bounded region in the free con-

�guration space and/or to reach a goal region or a

speci�c con�guration. This problem has been consid-

ered within the Viability Theory framework, [2], that

computes the control such that some a priori de�ned

set is a viability domain, i.e., a region containing at

least one solution trajectory to the control problem.

Similar considerations apply to teams of robots op-

erating either under tight or loose constraints on the

distance among the team members. For example, to

avoid that the distance among team members grows

above a pre-speci�ed limit, the team may be required

to span a limited workspace region while moving to-

wards the goal.

The problem considered in this paper requires that

the i-th robot reaches a goal set, Ki � Qi. This set

can be a priori de�ned to account for the mission spec-

i�cations and modi�ed as a consequence of the data

acquired by on-board sensors during the mission.

The team control paradigm proposed in this paper

encompasses three levels: (i) de�nition of the goal sets

Ki to which the local (to each robot) control strategy

drives the robot i, and (ii) a negotiation procedure,

handled by a �nite state automaton (FSA) at each

robot, to adapt the motion strategy to the require-

ments imposed by the team neighboring constraints.

Once de�ned the goal set Ki and in the ab-

sence of motion constraints, the set �Ki
(qi) =

fk � qi; 8k 2 Kig de�nes the motion directions that

drive the i-th robot directly towards Ki. In gen-

eral, given the constraints imposed by the robot dy-

namics, only a subset of �Ki
(qi) can be used in

the computation of the controls. This subset results

from the intersection between the feasible velocities,

fi(qi; Ui) � ffi(qi; ui); ui 2 Uig, de�ned by the ro-

bot dynamics, and the desired velocities, �Ki
(qi), de-

�ned from the mission goals. This matching between

the velocity sets can be expressed as a control prob-

lem within the framework of di�erential inclusions by

_qi 2 ffi(qi; Ui) \�Ki
(qi)g.

The existence of solutions to di�erential inclusions

1502

Proceedings of ICAR 2003 
The 11th International Conference on Advanced Robotics 
Coimbra, Portugal, June 30 - July 3, 2003 



requires regularity conditions, namely various types of

continuity or semicontinuity, for the map Fi : Qi  

ffi(qi; Ui) \�Ki
(qi)g, [3]. Given the dependence of

Fi on the environment (through �Ki
), these are sel-

dom veri�ed. Furthemore, the co-domain of Fi is of-

ten the empty set. To overcome these two problems,

this paper proposes a two step procedure to solve the

robot control problem in the framework of di�eren-

tial inclusions: (i) pre-processing the acquired data

on the environment to ensure the adequate proper-

ties and (ii) synthesize a control such that, whenever

the intersection between the velocity sets is empty,

fi(qi; Ui) and �Ki
(qi) converge to each other, in a

sense to be de�ned ahead.

The paper is organised as follows: Section 2

presents suÆcient conditions for the convergence be-

tween two sets, used to solve the single robot control

problem modelled by a di�erential inclusion. Sections

3 and 4 outline the supervision strategies used over the

single robot control strategy de�ned in Section 2, for

multiple robots. Section 5 presents simulation exam-

ples for 2D holonomic and cart robot teams. Section 6

concludes the paper and points directions for further

work.

2 Motion in Hilbert spaces

The existence of a solution for the control problem

formulated in Section 1 requires the convergence be-

tween two velocity sets. This convergence can be ex-

pressed by having a measure of the distance between

the two sets converging to 0. Given that the con�gu-

ration space of real mobile robots is a Hilbert space,

the metric induced by an inner product can be used

to de�ne a distance between sets. In particular, the

following de�nition for the distance between two sets

A and B is used.

De�nition 1 (Distance between subsets of a

normed space

)

Let A and B be two subsets of a normed space. The

distance between A and B is de�ned as

d(A;B) = min
xa2A;xb2B

kxa � xbk (1)

where k � k stands for a norm. Although commonly

referred as a distance, [9], (1) is not a metric. The

distance between a point xa 2 A and a set B is de�ned

by making A a singleton.

The following theorem de�nes a projection map of

a point onto a set. See [3] for a demonstration.

Theorem 1 (Best Approximation Theorem) Let

G be a closed convex subset of a Hilbert space, X.

There is a map � : X 7! G and a unique element

�G(x) verifying

8x2X ; kx� �G(x)k = min
y2G

kx� yk

The map � : X 7! G projects X into the goal set

G. It is called a best approximation projector (b.a.p.)

whenever the following two conditions are veri�ed

k�G(x)� �G(y)k � kx� yk non-expansivity

h�G(x)� �G(y); x� yi � 0 monotonicity

(2)

with h�; �i standing for an inner product and k � k for

the corresponding induced norm.

The generation of a trajectory converging towards

a convex set can be derived using some basic tools

of geometry. The following theorem states suÆcient

conditions for this convergence to occur. The demon-

stration follows from the use of a b.a.p., de�ned from

Theorem 1 and the conditions (2), and of the Schwarz

inequality (see [16] for details).

Theorem 2 (Point-to-set convergence) Let X be a

Hilbert space, G � X a convex set, x 2 XnG and

�G(x) a b.a.p. of a point x onto G. Furthermore, let

xn be a subsequence of a trajectory x(t), outside G,

such that

9T>0 : 8tn>T ; hxn+1 � xn; �G(xn+1)� xn+1i > 0:

(3)

Then limn!1 d(xn; G) = 0:

Figure 1 illustrates an intuitive interpretation of

Theorem 2 when X is the 2D euclidean space. The �

stands for the inner product in (3) and represents a

rate at which the distance to G decreases by chosing

the point xn+1 when the system is at xn (assuming

that controls driving the system between xn and xn+1
exist).

xn

xn+1

G

Goal set

�����������������������

� ( )xn+1G� ( )xnG

xn+1-� ( )xn+1G

Figure 1: Interpretation of Theorem 2 when X is a

2D Euclidean space

When xn+1 ! xn the condition in Theorem 2 can

be formulated in continuous time, as

h _x; T?G (x)i > 0 (4)

where T?G (x) represents the orthogonal contingent

cone to G at x, i.e., the set of vectors orthogonal to

the space tangent to the border of G at x.

It is worth to emphasize that no particular physical

meaning was assigned to the X space and the goal set
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G considered in this section. Theorem 2 represents a

discrete time approach as xn stands for a point sam-

pled at time tn. Inequality (4) expresses the contin-

uous time equivalent convergence condition. For the

purpose of this paper, the discrete time version is used

with the identi�cation xn � _qn whereas the continu-

ous time version is used with the identi�cation x � q.

3 Control of single robots

Using the results in Section 2, the control of a sin-

gle robot i amounts to compute the controls Uis =

fui 2 Ui : � � 0g. ComputingUis may require the use

of exhaustive search techniques to evaluate the pro-

jection map and/or to avoid solving inverse dynamics

problems, e.g., computing uin from _qin+1 .

In the absence of further criteria, a greedy strat-

egy is used to choose a control vector from Uis with

the chosen control vector being the one that yields

the maximum �i, obtained from (3). This greedy ap-

proach may lead to local minima in �ijUis for instance

due to the loss of degrees of freedom in the control

vector, i.e., one or more controls do not cause any

progress in the mission even though the robot may

be moving. To avoid being trapped in local minima,

each robot has a FSA that modi�es the motion strat-

egy whenever �ijUis approaches 0.

The convexity assumption on the goal set Gi (iden-

ti�ed either with Ki or �Ki
(qi) in the continuous or

discrete cases, respectively) may require that a con-

vex set is extracted out of the data acquired by the

onboard sensors. Extracting a convex set out of an

acquired raw Gi can be made using computational

geometry techniques. For instance, assuming a sim-

ple polygonal region, polygon convexifying techniques,

[5] or the convex hull, [14], can be used. An alter-

native technique is to decompose the raw Gi into

Dirichlet regions, chosing one among them (see [11]

for an introduction to the convex partitioning of sim-

ple polygons). Non polygonal convex regions strictly

contained in G, with a shape that simpli�es the com-

putation of ��Ki
( _qin) or T

?

Ki
(qi), can also be used as

a replacement for a raw goal set G.

4 Control of robot teams

The con�guration of a team, given by fq1; : : : ; qng,

determines a set of distance relationships among the

teammembers (i.e., neighboring relationships). When

these relationships are exact, the control of the team

reduces to a standard set of n (one per robot) trajec-

tory following control problems.

To increase the 
exibility of the team in what con-

cerns mission execution, the neighboring relationships

may be relaxed, by allowing the distance between ro-

bots to vary within a speci�ed range or according to

some a priori de�ned mapping. The behavior of each

robot in the neighborhood of the teammates is deter-

mined by these relationships.

Neighboring relationships holding for the entire du-

ration of a mission are topological invariants2. For the

purpose of this paper, a team of robots equipped with

such a set of neighboring conditions is called a forma-

tion.

Clearly, arbitrary neighboring relationships may

lead to non useful formations. For example, the orien-

tation (in the world reference frame) of any robot in a

team is a topological invariant under arbitrary trans-

lations. A team orientation, de�ned as a weighted

sum of the individual orientations, is also invariant un-

der arbitrary translations. However, translations de-

�ned as to make the robots collide are useless whereas

translations preserving the distance between the ro-

bots may be useful.

Inter-robot distance preserving translations are a

particular instance of a large class of formations char-

acterized by having some region around each robot3

always in contact (e.g., intersecting or tangent) with

the regions assigned to other robots. The neighboring

relationships in this class are simply de�ned by spec-

ifying which regions of in
uence are in contact with

which others. Among the practical cases of formations

in this class are some soccer and military strategic

movements.

The team control problem thus amounts to the

computation of the motion of the team such that a

set of a priori de�ned neighboring relationships is a

topological invariant under the team motion. For a

team of holonomic robots in the 2D plane, a prac-

tical topological invariant formations is the Voronoi

diagram of the set of con�gurations fq1; : : : ; qng that

corresponds to the use of circular in
uence regions

centered at each robot con�guration. In this case, the

above region de�ned around a robot can be identi-

�ed with the Voronoi polygon the robot is in. If each

of the polygons keeps in touch with the same set of

neighbours along the whole mission the formation is

preserved. Figure 2 illustrates two formation situa-

tions.

Given a set of neighboring conditions, the team

control problem encompasses (i) the checking of the

neighboring conditions and (ii) the synthesis of a FSA

per robot to handle the corresponding events. The

operation of this FSA corresponds to a negotiation

procedure among the teammates.

5 Experimental results

This section presents simulation results on team

control, illustrating the ideas outlined along the pa-

2A topological invariant is a mathematical object that main-
tains its qualities between any two initial and �nal con�gura-

tions (e.g., connectedness) under the motion in the space of
team trajectories for the assigned mission.

3The robot's region of in
uence.
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R1

R2

R3
R4

R5

Formation preserving the Voronoi polygons neighboring

relationships

R1

R2

R3
R4

R5

Formation preserving a short distance between

teammates, but not the Voronoi polygons

Figure 2: Snapshot sequences illustrating two forma-

tions.

per. Two experiments are presented, both with teams

of size 3. In both experiments, the mission assigned

to the team is to move through a sequence of con�gu-

rations. The mission ends as soon as one of the team

members reaches its �nal goal region. In the �rst ex-

periment the team is composed of 2D holonomic ro-

bots moving in the plane, each of which controlled

according to the discrete strategy. In the second ex-

periment the team is composed of cart robots, each of

which controlled according to the continuous strategy.

For the sake of simplicity, the robots are dimensionless

in both experiments.

The goal sets Ki are balls of radius 0.1 centered in

a priori de�ned locations (see Tables 1 and 2) whereas

the sets of desired velocities are de�ned as �Ki
(qi) =

fk � qi; 8k 2 Kig. To speed up the exhaustive search

process in the computation of the � function, the

control space in both experiments is restricted to

f(v; !)g � V �
, with V = f�0:1;�0:05; 0;0:05;0:1g

and 
 = f�0:1;�0:05; 0;0:05;0:1g. For the 2D holo-

nomic robots, V and 
 stand, respectively, for the set

of controls acting on the world reference frame (x and

y axis). For the cart robots, V and 
 stand, respec-

tively, for the set of linear and angular velocities in the

robot reference frame. The b.a.p. map at instant tn is

given by ��K
( _qn) = �qn+0:1( _qn+qn)=k _qn+qnk and,

using Theorem 2, � = h��K
( _qn) � _qn+1; _qn+1 � _qni.

In the second experiment, TK (q)
? = ��q=kqk, with

� an arbitrary positive constant, leading to

� = h(cos(�)v; sin(�)v; !) ; �(�q)0=kqki.

Any control vector (v; !) leading to � > 0 is accept-

able (assuming no other criteria than the convergence

conditions of Section 2). Control vectors leading to

� = 0 are acceptable in the discrete control strategy.

The control vectors leading to � < 0 are rejected.
The neighboring relationships between robots i and

j considered in this paper are de�ned by the set of
expressions

d(qj ;Ri) < 0:5 (5)

d(qj ;Ri) > 0:1 (6)

i = 1; : : : ; n j =

�
i + 1 if i < n

1 if i = n

where Ri stands for a convex in
uence region around

the i-th robot. Condition (5) imposes that the robots

do not move away from each other whereas condition

(6) avoids any excessive approximation.

5.1 Team of 2D holonomic robots

The goal of the mission is to have the robots reach-

ing the goal sets de�ned in Table 1 while preserving

a reference formation. This reference formation is de-

�ned from the initial con�guration of the robots and

the neighboring conditions (5-6). These conditions al-

low each robot to move in a neighborhood of its team-

mates, with a preferred \follow the leader" motion

strategy (even though the leader can change during

the mission).

The simple kinematics considered allows the decou-

pling of the e�ects due to the negotiation procedure

from those due to the single robot control strategy.

For instance, in the absence of neighboring conditions,

each of the robots proceeds straight to the respective

goal set.

The FSA handling the negotiation is highly depen-

dent on the particular assigned mission. In this exper-

iment, the relevant states identify formation breaks

and the reaching of goal sets. Any breaking of the

reference formation must lead to a change in the mo-

tion strategy of each of the robots. The robots simply

stop and wait for the teammates to resume the broken

formation.

The mission is successfully completed. Figure 3a

shows the trajectories of the robots, with the goal sets

being represented by the circles. The slight bending

of robot 1 trajectory near its second goal set indi-

cates the end of a negotiation period and the begin-

ing of a straight to goal motion. Figure 3b shows the

time evolution of the � function for each robot. The

abrupt variations indicate the changes in the motion

strategy de�ned by the negotiation FSA whereas the

intervals with (positive) constant � values represent

the periods of time where controls are computed by

speci�c, mission dependent, algorithms. The nega-

tive slopes following the peaks indicate the periods

where the controls are computed by the procedure

outlined in Section 3. Figure 3c shows the state evo-

lution of the negotiation FSA. Holonomic robots are
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Starting Goal sets center location

Robot con�gurations Goal set 1 Goal set 2 Goal set 3

1 (-0.8,-0.6) (�0:8; 0:6 (0:56; 0:59) (0:5;�0:5)

2 (-0.7,-0.7) (�0:7; 0:35) (0:45; 0:42) (0:5;�0:5)

3 (-0.6,-0.8) (�0:6; 0:16) (0:34; 0:27) (0:5;�0:5)

Table 1: Mission speci�cation for the 2D holonomic robots team
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a) Robot trajectories.
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c) State evolution

Figure 3: Mission results for the 2D holonomic robot team

guided straight to the goal by the single robot control

algorithm. The neighboring conditions (5-6) avoid the

robots either to get too close to each other or to break

away. The team behavior depends on the individual

control goal (i.e., moving towards a goal set) and of

the chosen neighboring conditions. These have the ef-

fect of making relative positions of the robots approx-

imately constant along the mission thus exhibiting a

formation pattern.

5.2 Team of cart robots

The goal of the mission is to have the robots reach-

ing the goal sets de�ned in Table 2 while preserving

a reference formation. Only the neighboring relation-

ship (5) is used in this mission. The resulting for-

mation does not impose any order relationship among

the teammates, meaning that each robot is free to

move within a 0.5 distance of the teammates before a

formation break occurs.

Figure 4 shows the mission results, with the goal

sets shown as shaded regions in the 3D trajectories

plot. The 3D trajectories show intense maneuvering

as a result of the nonholonomy of the robots. This

matches the behavior of the � curves, with the spikes

indicating the motion strategy changes at each robot,

and of the negotiation FSA state, with multiple ne-

gotiations from all the teammates indicating the in-

tense maneuvering. The mission was successfully com-

pleted, with robot 1 reaching the �nal goal set and

robots 2 and 3 shortly behind. The state evolution of

the negotiation FSA exhibits a behavior more complex

than in Experiment 1. This is mainly due to the fact

that the intense maneuvering often required by cart

robots tends to easily move the teammates apart.

6 Conclusions

This paper presented a geometric approach to the

control of robots, supported on a projection map de-

�ned from basic properties of Hilbert spaces and suÆ-

cient conditions for the convergence of the robot con-

�guration to a goal subset in the C-space.

The approach encompasses a two-level structure

with: (i) an algorithm to choose controls verifying

a suÆcient condition for the mission execution un-

der unconstrained motion, and (ii) a FSA to handle

the interactions arising whenever the robots in a team

compete to execute the mission.

Designing a formation with non constrained robots

requires a set of neighboring relationships, a negotia-

tion procedure among the teammates and the changes

to the motion strategy of each robot. For non holo-

nomic robots the analysis of a formation is far more

complex. The region spanned by the team tends to be

much larger than for holonomic robots due to the in-

tense maneuvering that may occur along the mission.

Further work includes the study of stability issues

for the proposed structure using results from hybrid

systems theory and generalized Lyapunov functions.
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Starting Goal sets center location

Robot con�gurations Goal set 1 Goal set 2 Goal set 3

1 (-0.8,-0.6,0) (�0:31; 0:31; �=2) (0:76; 0:47; 0) (0:5;�0:5;��=2)

2 (-0.7,-0.7,0) (�0:56; 0:73; �=2) (0:22; 0:48; 0) (0:5;�0:5;��=2)

3 (-0.6,-0.8,0) (�0:79; 0:45; �=2) (0:48; 0:76; 0) (0:5;�0:5;��=2)

Table 2: Mission speci�cation for the cart robots team
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Figure 4: Mission results for the cart team
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