The RESCUE Project
Cooperative Navigation for Rescue Robots

Pedro Lima, Luis Custddio, M. Isabel Ribeiro, José Santos-Victor
Instituto de Sistemas e Robdtica, Instituto Superior Técnico — Torre Norte
Av. Rovisco Pais, 1; 1049-001 Lisboa; PORTUGAL
E-mail: {pal,lmmec,mir,jasv}Qisr.ist.utl.pt

Abstract— This paper provides an overview of the RES-
CUE project, a joint work of three research groups at
ISR/IST, Lisboa. The main goal of the project is to pro-
vide integrated solutions for the design of teams of coopera-
tive robots operating in outdoors environments, with special
focus in the short and mid-terms on perception and rep-
resentation issues, as well as cooperative navigation, and,
in the mid to long-terms, on task modeling, planning and
coordination as well. Currently, the reference scenario for
the project refers to a long-term goal of developing robotic
teams to help humans in search and rescue missions, and is
based on one land and one aerial (blimp) robot. The scien-
tific advances made on the enabling disciplines during the
project lifetime should be extendable to other outdoors ap-
plications. A brief description of the on-going research and
the results obtained is also provided.

Keywords— Topological Navigation, Cooperative Naviga-
tion, Task Coordination, Software and Functional Architec-
tures, Rescue Robots.

I. MOTIVATION

Outdoors environments offer several challenges for ser-
vice robot applications, especially under scenarios that
are dangerous (e.g., search and rescue, fire fighting, de-
mining), long-lasting information-massive (e.g., environ-
ment surveillance and monitoring) and/or production-
massive (e.g., agricultural and harvesting), therefore too
difficult to handle uniquely by humans.

One potential scenario for outdoors robot operation is
the search and rescue for victims after a catastrophic event.
This may range from natural occurrences, such as earth-
quakes or floods, to urban riots or terrorist attacks.

Earthquakes are specially daunting phenomena. FEven
though their occurrence is fortunately sparse, the conse-
quences are often tragic, leading to thousands of deaths and
many more injured people, besides mass building destruc-
tion. Reports from the infamous 1995 Kobe earthquake
in Japan show that many unexpected events hit the com-
munications and civil protection infrastructure, disabling
the execution of most of the available plans for disaster
situations [6]. Especially the serious damage to the tele-
communications network and the fact that the buildings of
disaster mitigation organizations were hit, caused serious
delays in the arrival of local and external assistance to the
victims. Structures in risk of collapsing are often inacces-
sible to humans because they are too dangerous. Survivors

This work is supported by project PCTI / 1999 / SRI / 33293 and
ISR/IST Pluriannual funding from the Fundagdo para a Ciéncia e a
Tecnologia, as well as by POSI, in the frame of the QCA.

may be unintentionally injured during removal of debris
due to the unawareness of their location or presence by the
rescue teams.

Teams of heterogeneous robots can represent an invalu-
able help for future search and rescue operations. Robots
can crawl over the collapsed structures, depositing small-
sized robots, and feeding air, water, food and medication
to trapped individuals through tubes snaked into the col-
lapsed structure. Small-sized robots can sneak inside very
confined spaces, taking with them tiny cameras and other
sensors to detect survivors and map survivor locations.
Aerial robots can provide a broad view of the search and
rescue scenario and map high-destruction locations. Coop-
eration among human-operated stations, a distributed net-
work of sensors located around the disaster area and teams
of tele-operated and/or autonomous robots can increase
the amount of available information to the rescue teams.
Whenever communications with the networked sensors or
the sensors themselves fail due to the earthquake impact,
robots can be dispatched to cover the areas most inaccessi-
ble to humans and help finding victims at those locations.
These mobile robot networks can also provide a dynamic
view of the scene at relevant locations.

A multi-disciplinary joint venture is definitely required
to face such a challenge, so as to address under an inte-
grated framework issues such as scenario mapping, multi-
robot (cooperative) navigation, (multi-robot) task plan-
ning and coordination. Three research groups (Intelli-
gent Systems, Computer Vision and Mobile Robotics) of
the Instituto de Sistemas e Robdtica at Instituto Superior
Técnico (ISR/IST), Lisboa, have joined their research ef-
forts on outdoors search and rescue robots under the Por-
tuguese funded project “RESCUE — Cooperative Naviga-
tion for Rescue Robots”.

The main goal of the project is to provide integrated
solutions for the design of teams of cooperative robots op-
erating in outdoors environments, with special focus in the
short and mid-terms on perception and representation is-
sues, as well as cooperative navigation, and, in the mid to
long-terms, on task modeling, planning and coordination
as well. Currently, the reference scenario for the project
refers to a long-term goal of developing robotic teams to
help humans in search and rescue missions, and is based
on one land and one aerial (blimp) robot. Simplifying as-
sumptions include daylight operation and good meteoro-
logical conditions (weak winds and no rain). The project

also concentrates on search and mapping operations, rather
than on the actual rescue, since this would require a focus
on technology that is out of its current scope.

The scientific advances made on the enabling disciplines
(Computer Vision, Robot Navigation, Hybrid/Discrete
Event Systems and Artificial Intelligence) during the
project lifetime should be extendable to other outdoors ap-
plications, such as environmental monitoring and surveil-
lance, satellite formations or planetary exploration, where
the group plans to be involved in the future.

Simultaneously, some of the project members have en-
gaged in an industrial consortium project with a Por-
tuguese SME, whose goal is to build the prototype of a
semi-autonomous robot to be used in real search and res-
cue applications. The project has a planned duration of
two and a half years, after which the robot will undergo
tests at destruction scenario used by the Lisboa Fire De-
partment for practical training of human fire fighters. The
semi-autonomous robot will be designed and developed in
continuous interaction with the Lisboa Fire Department ex-
perts and will be endowed with an on-board computer and
temperature-sensitive infrared camera, color image camera,
sonars, inertial sensors, temperature, gas and humidity sen-
sors. The two projects can clearly benefit from each other.
The research-oriented project will constrain some of its op-
tions based on the suggestions from the Fire Department
experts on what are realistic scenarios. The development-
oriented project will benefit from the research advances to
create new technology transferable to real scenarios.

II. REFERENCE SCENARIO AND RESEARCH SUMMARY

A reference scenario for the RESCUE project was set
up with two main goals: it should refer to a reasonably
realistic situation, and it should be rich enough to accom-
modate all the research topics of interest for the involved
groups. The current scenario consists of two robots: one
aerial blimp/zeppelin and one land outdoors robot. The
aerial robot will perform several tasks, such as making a
vision-based topological map of the destroyed site. The
map will include information on the relevance of each of
the mapped locations concerning the degree of destruc-
tion, presence of victims, etc, as well as on the difficulty
of traversing regions between them, due to the presence
of debris or obstructed paths. The map will be stored as
a graph and will be used to choose the best path for the
land robot to reach a goal location (e.g., one with a larger
number of victims). It can also be used to help the aerial
robot navigating. Issues of representation arise here, as
the views of the land and aerial robots are different, even
when they refer to the region associated to the same node
of the topological graph. The land robot will use several
sensors (GPS, inertial, vision, laser scanner, sonars) to nav-
igate towards the goal, handling the details associated to
the path (e.g., debris, trees, people on the way, etc). This
will extend the scope of the research to metric navigation.
Nevertheless, the topological map obtained by the aerial
robot can also be used as the initial iteration of a topolog-
ical mapping algorithm based on cooperative information

from the aerial and land robots.

While the land robot moves towards the goal location,
the aerial robot should follow it using a formation control
algorithm, so as to keep a reliable communication link and
to serve as a relay for information that the land robot may
need to send to distant stations. Therefore, formation fea-
sibility [12] and control is also covered, including situations
of temporary occlusion (from the communications or vision
standpoints) of one of the vehicles.

An animation illustrating the scenario above was devel-
oped to better explain the reference scenario to project
members and non-members (check
http://rescue.isr.ist.utl.pt/videos/rescue_web.mpeg).

Considering the long term goals of the project, this and
future scenario extensions (e.g., by adding more hetero-
geneous robots) require a software architecture capable of
handling real-time distributed control and supervision sys-
tems, as well as a functional architecture to integrate all the
required subsystems (and their corresponding functions)
consistently, i.e., so as the whole system is designed from
performance specifications.

The software architecture, currently in its implementa-
tion stage, is based on a multi-thread and distributed black-
board approach. The different threads handle sensor data
acquisition and processing, communications, behavior exe-
cution and behavior switching. Raw and processed data go
to the distributed blackboard, a distributed shared memory
organized in classes of variables corresponding to the dif-
ferent sensor classes. Some variable values are kept locally
at the robot that acquired and processed the data. Others
are broadcasted (or sent individually) to the teammates.
Some transducers have an associated set of virtual sensors,
each of them implemented by a separate agent. A typical
example is the vision transducer, with associated sensors
such as locate object, determine object speed, classify object.

The functional architecture comprehends the following
subsystems: task planning (to handle task/behavior alloca-
tion, intra-team communications and formation topology,
when a formation is required), task coordination (to han-
dle the decisions on which behaviors to select at every time
step, so as to optimize the performance in terms of time
taken, reliability, cost, utility or other factors - requiring
performance feedback from each subsystem) and behaviors
(individual — referring to one single agent — and relational —
involving relations among more than one teammate). Be-
haviors can be built as finite state automata, where arcs
are associated to conditions over detected events and most
states correspond to dynamic control systems implement-
ing navigation functions, parameterized according to the
task at hand (e.g., move until a given posture is reached,
track an object or a teammate). Note that behaviors can
be implemented using alternative approaches (e.g., based
on Petri nets or production rules), with relative advantages
concerning the representational power but a potentially re-
duced analysis power. This will be an issue subject to
research under the project. However, the software archi-
tecture is open enough to host these alternative models.

The navigation functions are the key practical develop-

Fig. 1. The ATRV-Jr land robot, fully equipped.

ments expected during this project. They will be based
on a multi-sensor system (GPS, compass, odometry, laser
scanner, sonars, vision and inertial navigation system com-
posed of rate-gyros and accelerometers) for the land robot,
an ATRV-Jr, shown fully equipped in Fig. 1. The naviga-
tion of the blimp (shown in Fig. 2) will be mostly vision-
based. Both the blimp and the ATRV-Jr navigation sys-
tems will mix metric and topological navigation.

The current work concerning metric navigation under the
project builds on existing closed loop solutions which use:
the GPS as a reference and odometry plus accelerometers
as feedback sensors for position estimates; the compass
as a reference and the rate-gyros as feedback sensors for
orientation estimates (roll, pitch and yaw). The novelty
here is on handling particular problems of outdoor envi-
ronments, such as very poor odometry and frequent loss
of GPS information due to trees or buildings. The quality
of metric navigation is improved by cooperative naviga-
tion, where a network of communicating sensors assembled
on the team robots can take advantage of their space di-
versity to provide information to each of the team robots
which they might miss if operating alone (e.g., one of the
robots does not have GPS available but one of its team-
mates does and can also estimate their relative postures).
All this work will necessarily require sensor models, which
cannot be obtained before outdoor runs, during which data
from all navigation sensors is registered, are performed.
The recorded data can subsequently be subject to statisti-
cal analysis in order to build the sensor models. This work
is currently underway but it is not reported here.

Work concerning topological navigation and map build-
ing shares two different, complementary, approaches. The
first, described in this paper in Section III, builds a topo-
logical map based on features extracted from the envi-
ronment using all the on-board sensors and localizes the
vwhicle within the topological map. This approach is com-
plemented by vision-based topological navigation, which is
rooted on existing approaches to traverse a region by identi-
fying successive images representing a mosaic of sub-regions
previously obtained. In the latter, the research work will
concentrate on low complexity representations of the mo-

Fig. 2. The blimp aerial robot, fully equipped.

saic images that can still allow the determination of where
the vehicle is with a given accuracy (typically lower than
for metric navigation [3]. Its novelty comes also from the
fact that the mosaic is constructed by the navigating robot
itself or by one of its teammates (e.g., the blimp builds a
topological map for the ATRV-Jr navigation). The sharing
of topological maps among teammates with very different
postures and world views will also raise challenging repre-
sentation research issues and provide improved individual
navigation capabilities.

The project approach is based on an integrated view of
the overall system to be developed in the short and long
terms. As such, a relevant issue concerns sensor data fusion
and the availability of (raw or processed, including fused)
data in a distributed blackboard [8]. Information on fea-
tures relevant for the system is obtained in general from
different sensors, by fusing them according to sensor mod-
els (e.g., considering their measurement uncertainty) and
stored in the blackboard. The blackboard provides a sen-
sor database where all the relevant raw and processed data
(e.g., from a given time period) is organized and available
to all decision levels, as well as information shared among
teammates, including data not acquired and/or processed
by the team member using it. This distinguishes our ap-
proach from non-integrated ones, where data is acquired
directly by each subsystem from the sensors relevant for
that subsystem, disregarding the fact that this information
may be relevant for other subsystems. A typical example
is the information on the presence of one or more obstacles
near a robot. This information is immediately required for
the robot to avoid the obstacle(s) but it is also relevant to
update the team world model, needed for decisions at the
task planning subsystem.

III. ON-GOING RESEARCH AND PRELIMINARY RESULTS

In this section we briefly report on-going work and pre-
liminary results on the topological navigation of the land
robot (shown in Fig. 1), the vision-based control and guid-
ance functions library for the aerial robot (shown in Fig. 2)
and the design of the software and functional architectures
for the whole system.

A. Land Robot Topological Navigation
A.1 Map building

A topological map supports the navigation of the land
robot. To perform a symbolic representation of the envi-
ronment the robot perceives it with its on-board sensors
and the acquired data is processed aiming at extracting
the most relevant features of the environment. The robot
perception is condensed in observations, o;, that represent
the information obtained from the processing of the raw
data acquired at each time instant ¢. An observation is
a vector where each component relates to a different fea-
ture. For instance, a feature defined as Color might have
the values red, green or blue. The different components of
the observations reflect that the robot is able to perceive
special types of attributes of the environment. These dif-
ferent levels of perception have to be recorded in the map,
that is composed by a set S of N states s;, i = ..., V.
Each state, containing a partial representation of a phys-
ical area of the environment, is characterized by a set of
relevant features to support the state identification and to
avoid mismatching. According to the uncertainty of the
measurements and sensors, each state s; is represented by
a Gaussian pdf.

With this map characterization, the mapping procedure
consists of estimating, for each state in the map, the mean
vectors and the covariance matrices of the Gaussian pdfs
that maximize the probability of all observations given the
environment model, i.e., that maximize the likelihood func-
tion or, equivalently, its logarithmic representation,

t N
L(S) = log(p(O | §)) = D _log (Z ¢k - p(o; | 5k)> (1)
i=1 k=1

where any observation o; is a measurement of the state s
with a weight ¢, (Zfi1 ¢, = 1), which depends on the num-
ber of observations characterizing that state. The larger
the number of observations, the larger ¢; will be [17]. L(S)
can be seen as the likelihood of the environment mapping
by the N states, based on the observations until time ¢.

The maximization of the likelihood function in (1) is a
hard problem to solve. A way to overcome its computa-
tional burden is by changing the function L(S) by the ex-
pectation of the likelihood given a previous estimation of
the model, this corresponding to the use of the Estimation
and Maximization (EM) algorithm, as referred in [13], [15]
and [10].

The number of states, which is constant during the EM
algorithm, does not necessarily guarantees an accurate en-
vironment representation. Even for a good representation
at a given time instant, as the robot is always acquiring new
measurements, a possible update of the number of states
might be required. Consequently, it is strictly necessary to
evaluate the number of states after the stabilization of the
EM algorithm, as described with more detail in [16].

A.2 Localization

The robot estimated location §; is the map’s state that
is most likely to have produced the observations acquired
by the robot sensors during a given time interval. This
is notably different from the usual localization procedures
that aims at providing an accurate pose (position and ori-
entation) estimation in a local or global frame. In fact,
when the proposed localization procedure yields a robot
estimated location, ¢; = s;, this does not mean that the
robot physical pose coincides with the actual location that
lead to the map state s; through its several observations
by the robot.

The state estimation at each time instant ¢ is evalu-
ated using all the available observations during the in-
terval T'. According to a probabilistic approach, the cur-
rent state estimation, ¢y, is the argument that maximizes
the pdf of the state given the observation sequence Op =
{01,09,...,0,...,0r} acquired in the time interval T, i.e.,

Gt = argn;axP(qt =s;]01,...,07) (2)

Based on Markov Models, the localization procedure in
(2) is similar to the high-dimensional maximum likelihood
estimation problem. This problem is efficiently solved us-
ing the Baum-Welch algorithm, as well as the Forward-
Backward (FB) algorithm or simply the Alpha-Beta algo-
rithm. The same problem is referred in [14], [5] and in [11]
as a special version of EM.

In the FB algorithm, the time interval has a fixed length.
For long time intervals, corresponding to large operating
periods, the FB algorithm implementation becomes too
time consuming. For this reason, it is necessary to un-
derstand what has to be changed in the algorithm if the
length of the observation sequence is also considered to be
a variable. The revisited FB algorithm is described in [17].

A.3 Results

The map building algorithm was tested by tele-operating
the robot from a corridor to a room, containing chairs, ta-
bles and people moving. Setting low accuracy to the map-
ping algorithm the result is a topological map as depicted
in Figure 3. The map contains two states, corresponding to
the room and the corridor, which were distinguished based
on the differences detected on the free-area, as the selected
feature. The states do not contain any parametric infor-
mation and the connections between them are described in
[17]. The Figure 3 depicts the measurements of the laser
and sonar with two different grey levels, corresponding to
each state.

B. Aerial Robot Vision-Based Control

The blimp is a non-holonomic robot with three actuators:
o two parallel non-independent DC motors (with pro-
pellers) mounted on a shaft located at the bottom of the
blimp through the gondola. Since the shaft can rotate of
360°, the complete device can control motion in the up-
wards/downwards and forward/backward directions.

Fig. 3. Topological map with two states: a corridor and a room

o a third DC motor (with propeller) is located at the tail
in the lower wing to enable rotation.

The only available sensor is a small camera with a radio
link to a ground computer. This computer also has a radio
link — a modified remote controller — to send signals to
the three actuators of the blimp (the gondola servos for the
propellers and shaft rotation, and the tail servo).

A motion control library has been developed with the
goal of achieving desired positions (z,y, z) in world coordi-
nates. In general, to control the position, a multi-variable
nonlinear dynamic controller, robust to considerable (e.g.,
moderate winds) disturbances is required. In order to de-
sign such a controller, a model of the blimp dynamics is
needed. These tasks are simplified, at the cost of possi-
ble reduced robustness, by using feedback linearization to
cancel non-linear terms at the guidance and lower control
levels. This was the approach followed here.

The guidance controller, depicted in Fig. 4, is split in
its position and velocity controllers (levels 3 and 2 in the
figure, respectively). It uses estimates of the current posi-
tion provided by visual odometry to lead the blimp to the
desired final posture (zp,yr, zr) with a velocity v by gen-
erating references to the blimp velocity control loops for
rotation, forward/backward and upwards/downwards de-
grees of freedom (dof — level 1). At levels 2 and 3, world
coordinates are used, while local robot coordinates are used
at level 1.

The guidance controller will be used for several purposes,
such as moving the blimp to a target posture, following
lines on the ground (e.g, a road) or tracking a moving ob-
ject (e.g., the land robot).

The lower level controllers for the controlled dof are de-
picted in Fig. 5. Speed estimates are obtained from optical
flow [18]. Actually, the 6 dof in configuration space can be
determined using this method, if needed. Acceleration is
determined for each loop from the derivative of speed.

Level 3 Level 2 Level 1

lobal posiion - global direction and velociy
control . control

i | position

|

|

‘ i
! i

=H guidance :>

! i
! i
! i
! i

local velocity vontrol

rotation

velocity
guidance >
controller

| forward/backward

'| controller

|
| up/down

!

[

i
2

Fig. 4. Blimp guidance control block diagram.

| Speed Control | Acceleration Control |

| | | Driver blimp

| | | >

! control . control @

i speed | acceleration i %
| | |

| . ' acceleration

I \ Dl .

: : Speed Vision
| | | position

| |

Fig. 5. Low level blimp control block diagram.

All three low level controllers are similar. So we will
present one of them in more detail.

The forward /backward controller block diagram is shown
in Fig. 5. It is based on an outer loop composed of two cas-
caded feedback control loops for speed and acceleration,
and an inner loop to predict the required force and can-
cel the model non-linearities. The inner loop controller
reduces the errors due to perturbations such as wind and
unmodeled dynamics in the outer loop.

The simplified dynamic model of the blimp is given by

mo = F + pv? (3)

where F' is the applied force, resulting from appropriate
servomotor torques, m is the blimp mass and p is a coef-
ficient that depends on the blimp geometry. The equation
for Model 1, used in the inner loop shown in Figure 5, is

F(vg,0) = mug + pb* (4)

where v, is the desired acceleration and ¢ the current esti-
mate of the blimp velocity. The p coefficient is determined
out of a simple experiment. With zero acceleration, Equa-
tion 3 becomes F,; = pv2, or

FSS
p= 2 (5)

Therefore, one can determine experimentally the value of
p by providing a know input force and measure the steady
state speed (v = 0).

Regarding Model 2 in Figure 5, the equation is

F(é) = mé. (6)

where € is proportional to the difference between the de-
sired and estimated accelerations. As for the controllers,
they are implemented by constant gains determined from
the power required for the maximum acceptable error.

C. Software and Functional Architectures

The software architecture was designed to provide an in-
tegrated set of operations, namely graphical task design,
task planning, task execution, task coordination and task
analysis for a multi-agent and multi-robot system. The ar-
chitecture must support fusion of information acquired by
several sensors and sharing information between the robots
by a blackboard, therefore it is geared for the cooperation
between robots [8]. Its main goal is to close the gap between
hybrid systems and software agent architectures, building
on the experience from earlier tools [1], [4], [7], [9]-

The main building blocks of the RESCUE project soft-
ware architecture are agents. Different types of agents are
combined hierarchically in a distributed arrangement [2].
The backbone of the architecture is an agent hierarchy. At
the top of the hierarchy, the algorithms associated with the
agents are likely to be planners, whilst at bottom they will
be interfaces to control and sensing hardware. The planner
agents are able to control the execution of the lower level
agents to service high-level goals. To offer platform inde-
pendence, only the lowest level agents should be specific to
any hardware, and these should have a consistent interface
for communication with the planning agents that control
their execution.

In the next subsections, we describe the novel features
of our software architecture, including its three basic com-
ponents, as well as the five main Execution Modes for
each of those components. The components are the Agents,
the Blackboard, and the Control/Communication Interface.
The Control Mode coordinates the run-time interactions
between the basic components. The Design, Calibration,
Supervisory Control and Logging and Data Modes concern
the programmer interface. All modes are summarized in
the sequel.

C.1 Agents, Blackboard and Control/Communication in-
terface

We define an Agent as a software element with its own
execution context, its own state and memory and a built-in
procedure to sense and take actions over the environment.
Each of the agents has two interfaces: one to the upper-
level agents, the other to the lower-level agents, shown
schematically in Fig. 6.

An agent is implemented as an active object with two de-
fined ports in the upper interface. One of the ports is the
input port, which can be seen as the sensing port, through
which the agent is notified of changes in the world. In can
also be seen as the request port through which the agent
receives from higher-level agents notifications of actions
it should perform. The other port is the output port,
through which the agent reports progress to the caller or
throws events to higher-level agents. This is what we define
as the consistent interface for communication and control.

An agent has also a lower level interface through which
it can control and sense its lower level agents. The lower
level interface is customized according to the agent type,
e.g., a finite state automata agent has as many lower level
control ports as agents it is controlling and one lower level
input port where all lower level agents write events.

Agent’s ports are linked together through the black-
board. To provide a flexible agent hierarchy, the agent up-
per ports are never assigned in the definition of the agent,
but rather in the task definition. Ports are actually a syn-
chronized data entry in the blackboard. Each agent defines
a new scope (its scope) inside the blackboard. This scope
can be viewed as the agent memory.

Different types of agents are supported:

Goal-Based Agent: an agent that knows the other agents’
actions, the context where to apply its actions and the
expected result of those actions, so as to build a plan to
reach its goal;

Agent Driven by a Table with an Internal State: i.e., a Fi-
nite State Automata,;

Concurrent Agent: an agent that represents the concurrent
execution of two or more agents;

Control Loop: an agent that executes a closed loop con-
troller, or an sense-think-act loop, at a constant rate;
Cooperative Agent: an agent that represents the state of
the interaction between two or more agents;

Sensor Fusion Agent: an agent that collects data from sev-
eral sources, and fuses that data for later use by some other
agent;

Sensor Agent: a driver or a sensing hardware device server;
Actuator Agent: a driver or an actuator hardware device
server.

Combinations between these agent types provide the
flexibility to build a functional architecture suited for a
given multi-robot (cooperative) population. For special in-
teractions that are not supported, the architecture is open,
so as to include other types of agents.

Inputh{ A‘tput Port

BlackBoard
LY »
Agent A \
Input Port Output Port
BlackBoard
Agent B

Fig. 6. Schematic representation of an agent upper and lower inter-
faces and their input and output ports, as well as their connection
with the blackboard.

Control Mode: An upper level agent can send com-
mands to a lower level agent through special and well-

defined functions: start, stop, set and reset. If the agent
that encompasses the whole agent fleet is stopped, it will
request its hierarchically dependent agents to stop, trig-
gering a cascade reaction that will stop all the lower level
agents under its command. A similar description applies
to the other commands.

Design Mode: The Design Mode is similar to a Graph-
ics Drawing Program. Such programs provide different
tools for the different graphic objects, e.g., lines, squares.
Under the Design Mode, instead of drawing tools for each
type of graphic we have a drawing toolbox for each type
of supported agents, plus another one to link agents writ-
ten from pure code. The output is a meta-language that
represents an instantiation of the supported agents or the
included code files when the agent is built in pure code.
This meta-language is then transferred to the target robots
for execution [4].

Calibration Mode: To facilitate the calibration proce-
dure of robot fleet, each agent has a calibration window,
which can be requested remotely before the start of the
mission or during its execution. The calibration data is
persistent and can be used in a later mission. That data is
stored in the central station, making fleet management eas-
ier. Calibration data is distributed to the robots before run
time. The operator makes the calibration following the in-
structions appearing in the remote window. For each agent
which is part of the mission to be executed, the operator is
asked whether he/she wishes to make a new calibration, or
to skip, save or load a previous one. This is done top-down.
Answering skip to the agent that represents the whole fleet
will calibrate all robots using the most recent calibration
data. This framework provides support to data manage-
ment calibration files. It also supports the tools to write
and read the various data types to and from files.

Supervisory Control Mode: Each of the agents has,
in addition to the Calibration Window, a Supervisory Con-
trol Window that is designed to be user-friendly. There-
fore, the agent that controls the motors has an interface
that should be appropriated for doing that. This interface
should then be different from the interface of a planner
agent. There are common features to all agents, such as
the requests to start, stop or logging. All the common
features are provided by a software tool, in the form of
buttons and text boxes. The supervisory control window
uses the same program interface, through which the agents
receive control requests from higher level agents and data
through which the lower level agents report success, fail-
ure or progress to the higher agents. The only difference is
the use of a graphical window to interface humans. If the
user chooses to control an agent which is part of the hier-
archy, the tool should disable all control requests arriving
at the controlled agent from other agents. In the supervi-
sory control window, there is also a blackboard view. In
the blackboard view, the human supervisor can consult or
modify the various types of variables.

Logging and Data Mode: Each agent can keep a log-
ging file. If the supervisor chooses an agent to make data
log files, such a file is written locally, i.e., inside each of

the robots. After finishing its mission, the logging files are
stored on the central station. During run-time, an operator
can also choose to consult the logging of a particular agent.
The framework with the corresponding time tag logs all the
requests arriving and all reports departing from an agent.
Changes in the blackboard variables can also be chosen
to be automatically logged. Additional logging should be
done inside the code of the agent. The framework will pro-
vide a program interface for doing so, without the need to
open files, managing files and so.

C.2 Functional Architecture

The combinations between available agents provide the
flexibility to build the functional architecture for the Res-
cue project. Let us show that with a relatively simple ex-
ample related to the project reference scenario: consider
that the land robot includes an agent that builds a topo-
logical map, another agent that determines the robot lo-
calization and a third agent that handles the navigation
loop. The map and the robot pose are shared by the
three agents through a blackboard shared memory inside
the robot agent (an agent at a hierarchically higher level).
The four agents are running in parallel, so a Concurrent
Agent is required within each of the agents (see Fig. 7).

Position
Map

Agent::Robot::Atrv

LA

Agent::Maping Agent::Position Agent::Navigation

Velocity
Aceleration

Fig. 7. The robot agent for a robot endowed with Mapping, Posi-
tioning and Navigation agents.

Let us now assume that the navigation agent has
available alternative behaviors, represented by alternative
agents (see Fig. 8). When the robot starts its motion, it
does not have a map yet. Hence, the navigation agent
should wander around for a while and then receive com-
mands to move from one place to another. As a result,
we further decompose the navigation agent into two lower
level agents: one to wander around (Wander), another for
path following (PathFollow). In a scenario under which
the land robot needs to follow the aerial robot, a third
agent is needed (FollowTarget). One might think of a Fi-
nite State Machine connecting the PathFollow, Wander and
FollowTarget agents (representing land robot behaviors) as

OR Velocity
Aceleration
Knowledge Base

Velocity
Aceleration

Agent::FiniteStateMachine::Navigation Agent::Planning::Navigation

Agent::Wander Agent::PathFollow Agent::FollowTarget

Fig. 8. Alternative navigation agents.

the agent representation for the navigation agent (FiniteS-
tateMachine::Navigation). One possible alternative would
be to handle navigation as a planning problem, e.g., logic-
based. In that case, the FiniteStateMachine::Navigation
agent would be replaced by a Planning::Navigation agent.

Specific rules must be followed while building the com-
plete task coordination system. In the example given, all
the navigation agents must share and update the continu-
ous state of the robot in the blackboard. The position can
be obtained by a Sensor Fusion agent, including several
agents that run image, sonar, laser and processing algo-
rithms, all living within the same robot or even in different
team robots.

IV. CONCLUSIONS AND PROSPECTIVE WORK

This paper described the main goals and reference sce-
nario of the RESCUE - Cooperative Navigation for Res-
cue Robots project, currently being carried out by three
research groups of ISR/IST. The project aims at introduc-
ing research advances in its enabling disciplines, namely
as Computer Vision, Robot Navigation, Hybrid/Discrete
Event Systems and Artificial Intelligence, applied to out-
doors scenarios, mainly search and rescue operations.

Currently, two robots are being used by the project team.
Preliminary experimental results obtained with the land
robot using a reduced number of features for topological
localization and mapping were presented for indoor and
structured environments. According to the robot capa-
bilities, the future work includes: i) the test of the algo-
rithm using a larger number of features extracted from the
land vehicle and aerial vehicle sensors cooperative naviga-
tion - (e.g., free space, environment sharpness, geometric
features, speed, orientation), ii) the extensive testing in
outdoor environments, iii) the integration of the Markov
Model approach for localization presented in [17] in a si-
multaneous localization and mapping procedure in unstruc-
tured environments aiming at search and rescue operations.

A motion control library has been developed for the
blimp aerial robot which provides the basic functions for its
navigation. Line following, target tracking and formation
control algorithms will be subjects for future work.

Underlying the whole project development is a software
architecture that supports a multi-agent multi-robot func-

tional architecture with several modes of operation. The
architecture is based on a hierarchy of agents distributed
across and within the team robots. The software archi-
tecture design is finished and the implementation work is
currently on going.

ACKNOWLEDGMENTS

The authors wish to express their acknowledgment to the
student members of the RESCUE project team who con-
tributed to the concepts, diagrams and results described in
this project overview paper, namely Alexandre Bernardino
(optical flow), Joao Frazao (software architecture), Thomas
Krause (blimp motion control library) and Alberto Vale
(land robot topological localization and mapping).

REFERENCES

[1] H. Bruyninckx. “OROCOS: Design and Implementation of a
Robot Control Software Framework”, Proc. of IEEE ICRA 2002,
April, 2002.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
Patterns: Elements of Reusable Object Oriented Software”,
Addison-Wesley, Reading, MA, 1995.

[3] N. Gracias, J. Santos-Victor. “Underwater Mosaicing and
Trajectory Reconstruction using Global Alignment”, IEEE
OCEANS 2001, Honolulu, November 2001.

[4] Y. Hur, L. Lee. “Distributed Simulation of Multi-Agent Hybrid
Systems”, IEEE International Symposium on Object-Oriented
Real-time Distributed Computing (ISORC), April 29-May 1,
2002.

[5] M. Kijima. “Markov Processes for Stochastic Modeling”, Chap-
man & Hall, (1997).

[6] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi,
A. Shinjou, S. Shimada. “RoboCup Rescue: Search and Rescue
in Large-Scale Disasters as a Domain for Autonomous Agents
Research”, Proc. of IEEE International Conference on Man,
Systems and Cybernetics, 1999.

[7] K. Konolidge. “Saphira Robot Control Architecture Version
8.1.0”, SRI International, April, 2002.

[8] P. Lima, R. Ventura, P. Aparicio, L. Custédio. “A Func-
tional Architecture for a Team of Fully Autonomous Cooperative
Robots”, RoboCup-99: Robot Soccer World Cup III, Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2000.

[9] D.C. MacKenzie and R.C. Arkin. “Evaluating the Usability of
Robot Programming Toolsets”, The International Journal of
Robotics Research, Vol. 17, No. 4, pp 381-401, 1998.

[10] A. Papoulis. Probability, Random Variables and Stochastic Pro-
cesses, McGraw-Hill, 1991.

[11] L. Rabiner. “A Tutorial on Hidden Markov Models and Selected
Applications”, Proc. of the IEEE, pp. 257286, 1989.

[12] P. Tabuada, G. J. Pappas P. Lima. “Feasible Formations of
Multi-Agent Systems”, Proc. of the American Control Confer-
ence, Arlington, VA, 2001.

[13] S. Thrun. “Probabilistic Algorithm in Robotics”, Artificial In-
telligence Mag., 21(4), pp. 93-109, 2000.

[14] S. Thrun, W. Burgard and D. Fox, “A Real-Time Algorithm for
Mobile Robot Mapping with Applications to Multi-Robot and
3D Mapping”, Proc. of the IEEE Int. Conf. on Robotics and
Automation, 2000.

[15] S. Thrun, W. Burgard and D. Fox, “A Probabilistic Approach
to Concurrent Mapping and Localization for Mobile Robots”,
Machine Learning 31, pp. 29-53, (1998).

[16] A. Vale, M. I. Ribeiro. “Environment Mapping as a Topological
Representation”, 11th International Conference on Advanced
Robotics (submitted), 2003.

[17] A. Vale, M. L. Ribeiro. “A Probabilistic Approach for the Lo-
calization of Mobile Robots in Topological Maps”, Proc. of the
10th TEEE Mediterranean Conf. on Control and Automation,
2002.

[18] S. van der Zwaan, A. Bernardino, J. Santos-Victor. ”Vision
based station keeping and docking for floating vehicles”, Proc.
of the European Control Conference 2001, Porto, Portugal,
September 2001.

