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Chapter 4 
 

Approximate Localisation 
 
The Approximate Localisation algorithms are based on an initial posture estimate 

that is subject to refinement within the vicinity of the initial posture estimate. It may not 
be stated that a global error minimum is achieved. One may only claim that the posture 
estimates are updated until a local error minimum is reached. Two different methods 
were developed for Approximate Localisation: Reference Transform and Error Descent. 

The Reference Transform algorithm is based on matching some landmark samples 
in the laser scan to their counterparts in the simulated scan. When a match pair is found, 
the point-to-point coordinate difference expresses a fraction of the posture correction 
equations. The simultaneous application of this principle to several landmark pairs 
provides an over-determined non-linear system that can be linearised in case the posture 
errors are small, and solved to yield a posture update. Once the posture update is 
computed, the overall enhancement is assessed with the Likelihood Test and the 
procedure is repeated using the revised estimate as a starting value, until the Likelihood 
Test enhancements are negligible. 

The Error Descent algorithm was designed for difficult environments where reliable 
landmark pairs are scarce or non-existent. It uses a massive computation approach: for 
every posture candidate the Likelihood Test (LT) is performed. Then, six "neighbour" 
postures, located at fixed steps from the candidate posture, are also tested with LT. In 
case any of these has lower LT cost it is considered as a better estimate. The procedure is 
repeated iteratively, creating a graph (or "tree") of candidate postures where the branches 
have always lower LT cost than its parent knots. When no further enhancements are 
possible, a new iteration is initiated using the final posture estimates (the "leaves") as 
start-up knots and a lower step value to provide a more refined estimate. The algorithm 
stops when the predefined number of iterations is reached. Then, the estimate with the 
lower LT cost is chosen as the best posture estimate. 

 
 
Chapter Organisation 
 
The Reference Transform is introduced in Section One and it is formally developed 

in Section Two. The Error Descent is developed in Section Three. In Section Four some 
compared experimental results are presented. The relative merits of the two algorithms 
are discussed in Section Five. 
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4.1 Outline of Reference Transform  
 
The principle of operation of Reference Transform is based on identifying a set of 

points, common to the laser scan and a simulated scan computed as if the robot was 
located in the initial posture estimate, ),,( III yx θ . The initial posture estimate is 

“external” to Reference Transform and it is expressed in world coordinates. It may be 
supplied by odometry, by Frame Localisation or by the human operator using any other 
method. 

The samples in the laser scan are expressed in a local cartesian reference associated 
to the robot while the samples in the simulated scan are expressed in a local cartesian 
reference associated to the initial posture (Figure 1). If the same scene element is 
identified in both scans with different coordinates (in the local references), a difference 
between the two references is revealed. Thus, the coordinate difference in the local 
references is related to the distance between the robot reference (associated to the laser 
scan) and the simulated scan (associated to the initial estimate).  

 

 
Figure 1 – Introduction to Reference Transform 

 
The scene elements used for Reference Transform are individual range samples. 

Therefore, each sample is described by two coordinates, ),( yx . The analysis of N 

matching scene elements (with 2≥N ) defines an over-determined system to compute the 
transform between the simulated scan and the laser scan references, ),,( PPP yx θ . 

Once the reference transform is identified, the initial posture estimate, ),,( III yx θ , 

may be corrected by the reference transform defined by ),,( PPP yx θ , yielding the updated 

posture estimate, ),,( robotrobotrobot yx θ . 

 
The Reference Transform algorithm uses the laser scan and the simulated laser 

scan as defined for the Likelihood Test. The first step of the algorithm is to compute a 
simulated scan from the map data as if the robot is located at the initial posture, 

),,( III yx θ . The method for creating the simulated scan was described in Chapter 3, 

Section 2. The current version of the simulated scan for Approximate Localisation does 
not use reflectance data, either. 
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4.1.1 Landmark identification 
 
Once the two scans are available, the simulated scan is searched for natural 

landmarks. Landmarks are characteristic sequences of samples that can be uniquely 
identified within a given neighbourhood. The preferred landmark on two-dimensional 
worlds is the corner. It is very characteristic, and can be precisely located. In man made 
environments, perpendicular corners occur very often and the two lines intersecting at the 
corner may be regarded as line segments pivoting around a central point (the corner). The 
inner product operator applied to the two line segments provides a minimum of the its 
absolute value when the two segments are orthogonal. Then, the corner identification in 
such topologies, reduces to the validation of an inner product below a given threshold. In 
case there are no right corners, the corners closest to the right angles can be used, 
provided the validation threshold is relaxed to accommodate the actual angles in the 
scene. 

The simulated scan is represented as an array of range samples ordered by the 
sweep angle, measured from a central point, the initial posture, ),,( III yx θ . With the 

initial posture, the range and direction data, the simulated scan can be represented as a 
set of ),( yx  pairs by means of a canonical trigonometry transform. A sliding window of 

12 +W  samples is applied to the simulated scan, where the user-defined parameter 
NW ∈  is the distance between the central sample and the samples lying at the ends of 

the window. 
Figure 2 shows a sliding window with nine samples, i.e., 4=W , applied at sample 

is . The L-shaped profile denotes the distribution of the scan samples in space, while the 

array on the bottom represents the sliding window interval along the range data array.  
 

 
Figure 2 – The elements in the sliding window 

 
In order to classify sample is  as a natural landmark (a corner in this application), 
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the neighbouring eight samples are analysed with some edge extraction method, such as 
the “Edge-based initial segmentation” described in [SequeiraV_1]. For the purpose of the 
Reference Transform, only the location of the landmark is relevant, the parameters of the 
segments adjacent to it are ignored. Therefore, a simpler algorithm that measures the 
inner angles between is  and the samples before is  and is  and the samples after is  is 

used. 
The centre of the sliding window, is , is considered a pivot point of two segments 

intersecting at is  and defined from 1−is  to is  and from is  to 1+is , (4.1), where )( ba →  

denotes the oriented line segment defined from a to b. Extending the process to the other 
samples in the sliding window generates additional two-segment pairs, each one defined 
by three samples, all intersecting at is , (4.2). In general, for each is , the sliding window 

data is grouped in a set of W two-segment pairs, defined by (4.3), with a common point, is . 
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In Figure 3, a full simulated scan of the classroom (see Chapter 3, Section 4), is 

presented on the left (the invalid readings were removed; the distance between markers 
on the grid is 1meter).  

 
 

Figure 3 – Using the sliding window along the simulated scan 
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On the right, the lower left corner is magnified (the distance between markers on 
the grid is 0.1m) and a sliding window is shown. In the present example, 4=W  and the 

sliding window moves in the counter-clockwise sense. 
The next step is the computation of the individual inner products between the two 

segments )(,)( kiikii ssss +− →→  for every ,1, Wkk ≤≤  and their summation of the 

absolute values, for every is  along the simulated scan. Since the samples are expressed in 

cartesian coordinates this operation is straightforward. When the summation of the inner 
product’s absolute values for a given is  is below a given threshold, is  is marked as a 

landmark sample. The results of the search for landmark in the enlarged region of Figure 
3 are illustrated in Figure 4. 

 

 

Figure 4 – Corner detection based on the sliding window 
 
In Figure 4 the corners are filled squares (or diamonds) and the sliding window are 

the outlined polygons. Only the sliding windows associated to the four detected 
landmarks are represented. 

The individual inner products are computed using the simulated scan's cartesian 
representation. In fact, the relevant value is the normalised inner product, i.e., the inner 
product divided by the segments norms. This value corresponds to the cosinus of the inner 
angle between the two segments. In case the arc cosinus is closer to the orthogonal than 
the threshold, the central sample is  is considered a corner. In Figure 5, where range data 

is superimposed to the simulated scan, one corner did not meet this condition; this is 
denoted by a filled diamond in the simulated scan without its counterpart in the range 
scan. The landmark selection method is repeated until a sufficient number of landmarks 
have been identified in the simulated scan.  
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Assuming the posture error is small, the laser scan and the simulated scan should 
have similar range profiles and their relative orientation should be approximately 
aligned. If a landmark in the simulated scan is centred at is , its counterpart in the laser 

scan, jl , should lie between Zi −  and Zi + , with NZ ∈ and WZ > , (Figure 5). 

  

 

Figure 5 – Searching for landmarks in the Zi ±  neighbourhood 

 
In Figure 5, the same environment details as in Figure 3 are presented and the 

laser scan was superimposed (with the symbol “o”). If the corners are used as landmarks, 
the normalised inner product may be used as before. When a correspondence is 
established, the landmark pair is represented by two ),( yx  points defined in cartesian 

coordinates, (4.4). 
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Once a sufficient number of landmarks is  have been identified in the simulated 

scan and their counterparts in the laser scan, jl , are also detected, the Reference 

Transform algorithm proceeds to the next step. 
In this implementation, the simulated scan initiates the landmark detection while 

the laser scan is used to corroborate the candidate landmarks. The process could be 
symmetric, initiating the landmark detection with the laser scan. The former option was 
preferred since the laser scan is usually subject to higher noise levels and the corner 
definition would be more prone to errors.  
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It is implicit in the method that both profiles are quite similar. Since only the 
location of the corner is recorded and not the relative orientation of its axis, it can happen 
that the two corners, located approximately on the same azimuth relative to the robot, 
may correspond to different features. Such an example is presented in Figure 6, where the 
match error is due to a fault in the map, which includes an object no longer standing 
within the laser field of view. 

 

 
Figure 6 – Incompatible landmarks due to a map that includes an object no 

longer visible 
 
To minimise this difficulty, it would be necessary to consider more data about the 

corner (at least its convexity status), increasing the algorithm’s complexity and 
computation burden. Since this occasion is seldom decisive, this variant was dismissed. 

 

4.1.2 Posture update using reference transform 
 
The landmarks in the simulated scan are measured radially relative to the initial 

posture estimate, whereas the landmarks in the laser scan are measured radially relative 
to the actual system location. Establishing a reference transform between the simulated 
scan landmarks and the laser scan landmarks, results in an expression to compute the 
correction required to match the initial posture estimate and the actual (unknown) 
system posture. 

Each landmark pair, expressed in cartesian coordinates, is an instance of this 
transform, expressed in (4.5), where ),,( PPP yx θ  are the three unknown parameters that 

represent the corrections.  
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Since each landmark pair yields two equations, the minimum number of landmarks 

to solve (4.5) is two, in order to get four equations on three unknowns. However, adding a 
few more landmark pairs contributes to a better solution, especially if these landmarks lie 
on opposite sides relative to the posture in the centre of the scan, (Figure 7).  

 

 
Figure 7 – Sample landmark pair distribution 

 
The line segments in Figure 7 point from the centre of the scans to the landmarks. 

In case a large number of landmark pairs are available, there will be clusters of 
landmarks located in approximately the same direction. In case the reflectance data 
varies smoothly along the close landmarks, the range measurements will be similar and 
the posture correction induced by the landmarks in the cluster will be approximately the 
same for all of them. Thus, one landmark per landmark cluster suffices to the system of 
equations; the extra equations are nearly dependent on the selected one, and their effect 
reduces to a computation effort increase. 

If the set of NL  landmark pairs and their associated transforms (4.5) are considered 
simultaneously, and the terms are rearranged in order to the unknowns, ),,( PPP yx θ , a 
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non-linear over-determined system is defined, (4.6). 
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The main postulate in Reference Transform is that the correction errors are small. 

This assumption is critical to the next step, where the system (4.6) is linearised around 
0≈Pθ , (4.7). If the angular correction ( Pθ ) is lower than 0.1rad (6º), the linearisation 

error is less than 0.5%. Operating within this range, the linearised system, with the 
unknowns sorted in the usual sequence, PPP yx θ,, , is defined in (4.8). 

 









≈

≈
⇒≈

PP

P

Pif
θθ

θ
θ

)sin(

1)cos(
0  

 
(4.7) 
















⋅





























−

−

−

=





























−





























P

P

P

SimScan

NL

NL

SimScan

NL

NL

robot

NL

NL

y
x

x
y

x
y
x
y

y
x

y
x
y
x

y
x

y
x
y
x

θ

10
01

10
01
10
01

2

2

1

1

2

2

1

1

2

2

1

1

MMMMM

 

 
 
 
 

(4.8) 

 
The over-determined linear system is solved by standard algebraic methods, 

detailed in Section Two. The result is the posture correction, ),,( PPP yx θ , representing 

the reference transform that translates the initial posture estimate ),,( III yx θ  into the 

actual posture. Thus, the actual robot posture in world coordinates may be estimated with 
a canonical reference transform, (4.9) and (4.10). 
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The newly computed posture, ),,( robotrobotrobot yx θ , must then be validated with the 

Likelihood Test (Chapter 3, Section 3). In case there is a point-to-point distance 
enhancement, denoted by the Number of Valid Pairs (NVP) and the zero-th to second 
order moments (Match Pairs, Expected Value and Dispersion), the posture 

),,( robotrobotrobot yx θ  is published as the updated posture estimate. Otherwise, the Reference 

Transform algorithm ends with failure. 
 

4.1.3 Coping with Reference Transform constraints 
 
The Reference Transform algorithm requires the following constraints to be met: 
 
1. The sample located closest to the corner is considered to be the corner. An 

alternative would be to use line extraction and define the corner at the 
intersection of the two extracted line segments. This approach was not followed 
due to the problems encountered with the extraction of line segments based on 
few samples. 

2. The laser scan resolution should be high to obtain detailed information of distant 
landmarks. With a laser scanner performing 2000 samples per revolution, the 
distance between adjacent samples at 10 meter is 0.03m. Thus, the target 
surface should contain no features smaller than 0.1m to 0.2m in order to obtain 
sufficient samples to extract the profile. 

3. The point-to-point distances between the simulated scan and the laser scan near 
the landmarks must be small in order to assure that a proper matching can be 
found within a limited scope of search. Using a wide range scope would require 
complex extraction and matching algorithms to ensure the correspondence 
between simulated scan and laser scan features. 

4. The angular correction should be small to allow the linearisation. The initial 
trials have shown that the maximum angular corrections possible with 
Reference Transform are below 0.1rad (6º), within the valid approximation 
boundaries. Typical experimental results presented in Chapter 3, Section 5, 
show angular corrections, Pθ , below 0.01rad (0.6º). Thus, the angular constraint 

is set by the landmark matching and not by the linearisation hypothesis.  
 
Depending on the map data source, the laser scan and the simulated scan may 

exhibit different error patterns, which also constrains the landmark extraction. After each 
iteration, the Likelihood Test is run to assess the newly computed posture.  

Given all the constraints mentioned before, the Reference Transform algorithm was 
implemented in closed loop, with the results of one iteration being used as the initial 
posture estimate of the next iteration. The algorithm ends when the pair-to-pair distance 
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enhancements are negligible or negative.  
Apart from a limited risk of error in the initial iterations of Reference Transform, 

due to false identification of landmarks, laser error measurements or map faults, the 
algorithm converges to the best estimate within two to five iterations. The algorithm error 
is detected by increasing pair-to-pair distances in the Likelihood Test. 

 
For difficult experimental conditions (limited and/or outdated maps, surfaces with 

poor reflectance, laser scans with insufficient resolution as described in Chapter 3, 
Section 5 in the “factory”) a blind search algorithm was developed, the Error Descent 
algorithm, described in Section 3. 

 
 

4.2 Formal development of Reference Transform 
 
The data required to perform Reference Transform is an initial posture estimate, 

),,( IIII yxp θ= , a laser range scan and a description of the scene obtained from off-line 

maps, 3D reconstructed maps or previous laser scans. 
The simulated scan data, defined in Chapter 3, Section 2, is expressed as an array of 

N range samples associated to the initial posture, Ip , uniformly distributed in the 

angular interval between bearings minb  and maxb , { }Ii pNisS |,...,2,1, == . The angular 

boundaries are defined in the laser scan parameters.  
The samples in the simulated scan, S, are expressed in cartesian coordinates, 

relative to the initial posture estimate, Ip , (4.11). 
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The proposed landmark selection method assumes that corners are used as 

landmarks. The identification of the natural landmarks is performed with a sliding 
window of size 12 +W , centred on sample is , )(iSW , (4.12). The sliding window sweeps 

the array from 1+=Wi  to WNi −= . The size of the window, W, is defined off-line by the 
user. The normalised inner product, ),( kiNIP , measures the degree of co-linearity of the 
two oriented line segments defined by from )( kii −→  and )( kii +→ , (4.13), with 

Wk ,...,1= . This test is bounded to the elements within the sliding window. For every 
sample within the sliding window, the individual normalised inner products, ),( kiNIP , 

are computed, (4.14). 
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The normalised inner products (NIP) correspond to the cosinus of the inner angle of 

the oriented line segments. The absolute values of ),( kiNIP  are added from 1=k  to 

Wk = . If the average normalised absolute inner product value is lower than a given 

threshold, (4.15), the sample [ ]Tii yx  is a candidate landmark. 
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When the simulated scan array is completely swept, the set of candidate landmarks 

is analysed. In case there are two or more landmarks within the distance of the sliding 
window, the landmark with lower average NIP is kept and the others are discarded. The 
landmark set with NL elements is stored, keeping the original order and the radial index 
associated to the landmark, (4.16). 
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The next step of the algorithm is to search for similar landmarks in the laser scan. 

The laser scan is a set of laser samples with range and reflectance data (although the 
reflectance is not used), defined from minb  and maxb . The first step is the expression of the 

laser scan in cartesian coordinates, similar to (4.11). The same angular parameters must 
be used, to assure accuracy and correspondence between the simulated scan and the laser 
scan: 
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Once the two scans are expressed in the same form, the laser counterparts of the 
simulated scan landmarks can be searched within the vicinity of the landmark indexes 
stored for each SimScan

ml , (4.16). The method of the normalised inner product is used again, 

restricted to the vicinity of sample is , associated to SimScan
ml . The search window compre-

hends 12 +Z  samples. For each simulated scan landmark, SimScan
ml , the associated index, i, 

defines the index of its laser counterpart, robot
nl , (4.18), located within Z samples of i. If no 

landmark can be found in the vicinity of i, the candidate landmark SimScan
ml  is discarded. 
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If more than one laser landmark, robot

nl , is defined within the sliding window size, W, 

the landmark with the lower average NIP is selected and the remaining ones are 
discarded. Finally, the set of natural landmarks (4.19) associated to the robot is restricted 
to the pairs where a simulated scan landmark (4.18) was detected. 

Beyond this point, the number of landmarks, NL , is reduced to the cases where the 
instances in the set of SimScanNL  landmarks associated to the Simulated Scan have their 

corresponding pairs in the set of robotNL  landmarks associated to the laser scan. 

 
In case the number of landmark pairs exceeds 10, a set of five to nine landmark 

pairs is selected from the whole set, following a maximum distance algorithm described in 
Appendix E. Using a reduced number of landmark pairs reduces the computation effort 
and minimises the linear dependence of the equations associated to landmark pairs 
located at short distances from each other. 

The set of NL landmarks pairs is expressed in the form of (4.8), where the 
linearisation hypothesis ( 0≈Pθ ) is assumed. The over-determined system of NL2  

equations on three unknowns is expressed as (4.20).  
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This system is of the general form of (4.21), where M is defined as (4.22) and Q is 

defined as (4.23). The matrix dimension is indicated in subscript.  
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Multiplying (4.21) on the left by TM , the over determined system can be solved in 

the form of (4.24), which is a regular (3x3) linear system.  
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The system coefficients in (4.24) are defined in (4.25) and (4.26). 
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The method used to solve (4.24) is the standard Gauss elimination. The result, 

[ ]TPPP yx θ , represents the transform parameters relating the actual robot posture 

associated to the laser scan to the initial posture estimate ),,( III yx θ  associated to the 

simulated scan. The posture update is performed according to equations (4.9) and (4.10). 
The updated posture ),,( robotrobotrobot yx θ  is submitted to the Likelihood Test. If the 

number of valid pairs (NVP) and/or match pairs (MP) increases, relative to the initial 
posture, ),,( III yx θ , and the expected value (EV) does not increase, (4.27), the updated 

posture is validated. In addition, if the NVP and MP do not decrease significantly while 
the EV and/or the dispersion (Disp) decrease, the newly computed posture is validated, 
(4.28), where δ  and ε  are two small positive integers. Otherwise, the update is 

discarded.  
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(4.28) 

 
While the update is valid, the algorithm is repeated, using the updated posture as 

the new initial estimate. When the update fails, the most recent initial posture is again 
submitted to the Likelihood Test with the final validation thresholds. The result of the 
algorithm is defined by its results, as described in Chapter 3. 

 
 

4.3 Error Descent 
 

4.3.1 Introduction 
 
During the project development, the need for extending Localisation to more 

difficult operating conditions arose. First, the 3D Reconstruction map was replaced by a 
poorer off-line map; then the possibility of using previous laser scans to supply map data 
was considered (see Chapter 3, Section 2). In parallel, trials were conducted in very 
difficult environments such as the "factory" (Chapter 3, Section 4). Both lines of work led 
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to the conclusion that a new algorithm, with major emphasis on robustness, was required 
to tackle the new challenges. 

The Frame Localisation and the Reference Transform algorithms, described 
previously, condense, in an early stage, all the laser and map data into short amounts of 
information that are submitted to further processing. The Likelihood Test is an extensive 
distance measure, designed to encompass all the data samples and validate the candidate 
postures.  

Using an opposite approach, a third algorithm was created to use the available data 
extensively, at a “raw” stage, without building models of the data. Based on the 
Likelihood Test, it tracks the evolution of the point-to-point distance parameters, starting 
at an initial posture and sliding along a path of diminishing cost (see Chapter 3, Section 3 
and (4.29)). Therefore, it is termed as Error Descent. 

 
This algorithm presents some advantages and a few disadvantages too: 
 
1. It requires no landmarks or particular characteristics on the laser or map data. 

All it needs is a form of simulated scan, based on a 3D Reconstruction map, an 
off-line map or previous laser data and a laser scan of the actual system posture. 

2. It is quite robust, even if the initial posture estimate is distant of the best 
possible estimate. In the field trials, corrections of 0.4m in position ),( yx  and/or 
0.15 rad (9º) in orientation )(θ , were commonly achieved, a figure far beyond the 

capabilities of Reference Transform. 
3. It is very intuitive: following a diminishing cost function is easily understood and 

implemented. It is a classical problem in control and robotics, with many 
algorithms and strategies available. 

4. It takes much longer to process the data than the other algorithms. When this 
kind of approach was first considered, it was abandoned due to excessive compu-
tation time (estimated to vary between 30 to 120 seconds with an Intel Pentium-
class computer, or comparable, to process range scans with 2000 samples). With 
current hardware, the computation time was cut by five to ten and it varies now 
from 2 to 10 seconds, depending on the parameters and resolution required. 

5. High quality results, especially in difficult environments, depend on the 
Likelihood Test parameters, primarily the maximum match distance threshold, 

MapT , and the last slot equivalent distance, max∆ (see Chapter 3, Section 3).  

 

4.3.2 Description of Error Descent 
 
The Likelihood Test values used for Error Descent are the number of valid pairs 

(NVP), match pairs (MP) and expected value (EV). These three values are involved in the 
cost function introduced in Chapter 3, Section 3, and repeated below: 
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In (4.29), np  is any candidate posture and α is a parameter, with the dimension of 

distance, which weighs the cost of non-match pairs. 
The Error Descent algorithm adopts a graph search approach. It starts with a single 

posture, which is the root of the graph (or tree), ),,( III yx θ . Then, the candidate postures 

are computed iteratively, following a path of diminishing cost along a regular grid. The 
grid is defined in three independent dimensions, θ,, YX , and the steps between adjacent 

samples, XYX δδδ =,  and θδ  are defined off-line by the human operator.  In addition to 

its cartesian coordinates, each posture is represented by three integer coordinates relative 
to the root. To translate these into world coordinates the step parameters are used. 

To detect a path along a diminishing cost function, a set of neighbours must be 
considered around each posture, ip , (the dark central cube in Figure 8).  

 

 
Figure 8 – Two type of neighbourhood in three dimensions: 

6 neighbours and 18 neighbours 
 
 
If the posture ip  is regarded as the centre of a 3x3x3 cube, the neighbourhood could 

consist of six postures, in case only one axis varies between ip  and its immediate 

neighbours, or eighteen neighbours, in case two axes vary between ip  and its neighbours, 

or twenty six neighbours, in case the three axes vary between ip  and its neighbours. 

In all cases, every point in the grid can be reached in successive steps, whilst the 
number of required steps to move between any two given points increases as the number 
of neighbours decreases. In most experiments, the cost (4.29) varies smoothly as the path 
progresses towards a given direction, except when the steps are very short and the varia-
tions are small. The six-neighbourhood variant, (4.30), was chosen in order to minimise 
the number of candidates aiming at directions where no cost reduction is expected. This 
approach reduces the number of posture submitted to the Likelihood Test, which is the 
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most time consuming operation, while augmenting the number of steps in the path. 
In order to operate within the error descent grid the postures’ metric representation 

is replaced by an equivalent representation in integer coordinates, ),,( kYkXkk nnnq θ= , 

relative to the origin ( Ip ), where YkXk nn ,  and knθ  are the number of steps progressed in 

each direction along the grid. The six neighbours are defined in (4.31) and the conversion 
between the two coordinate systems is defined in (4.32). 

7 
),,(1, iiXii yxp θδ+=  ),,(2, iYiii yxp θδ+=  ),,(3, θδθ += iiii yxp  

),,(4, iiXii yxp θδ−=  ),,(5, iYiii yxp θδ−=  ),,(6, θδθ −= iiii yxp  

 
(4.30) 

),,1(1, iYiXii nnnq θ+=  ),1,(2, iYiXii nnnq θ+=  )1,,(3, += iYiXii nnnq θ  

),,1(4, iYiXii nnnq θ−=  ),1,(5, iYiXii nnnq θ−=  )1,,(6, −= iYiXii nnnq θ  

 
(4.31) 
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The diminishing cost path follows every neighbour with lower cost than its root. 

When a posture has lower cost than all its neighbours, the search in that sub-path 
terminates and the posture is marked with a flag. The output of the algorithm is the 
sequence of steps (the paths) from the initial set of posture estimates to the best possible 
estimates, which are the postures with lower costs than its neighbours.  

 
The Error Descent procedure is straightforward. On each iteration, repeat the 

following steps with all the elements on the set of candidate postures: 
 
 
1. Compute the cost, (4.29), associated to the candidate posture, ),,( kkkk yxp θ= , 

represented in integer coordinates as ),,( kYkXkk nnnq θ= ; 

2. Establish a set of six neighbours around kq ; 

3. Verify if any of the six neighbours was previously considered and thus, already 
present in the set of candidate postures. In such cases, the repeated neighbour is 
discarded; 

4. Convert kq ’s to kp ’s and compute the costs, (4.29), associated to the remaining 

neighbours; 
5. Add every candidate with a cost lower than the initial one, )(cos kpt , to the 

candidate posture set and mark it as a new candidate posture; 
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6. If no neighbour has a cost lower than )(cos kpt , mark the corresponding kq  as a 

leaf (a termination of the graph or tree); 
7. Proceed to the next posture in the set of candidate postures. 
 
When the set of candidate postures has been fully browsed, resume the operation 

with the newly computed candidates.  The algorithm terminates when all the newer 
candidates have lower weights than their respective neighbours do. 

The outcome of Error Descent is a graph (tree) starting from the initial posture, 
)0,0,0(=Iq , growing along multiple directions (branches) until the terminations (leaves), 

(Figure 9).  
 

 
Figure 9 – A sample Error Descent graph (tree) 

 
In Figure 9, the paths along the grid are represented. Only the candidates along the 

diminishing path until the leaves are shown. The three axes represent the three 
directions and the grid coordinates represent the number of steps in each direction. The 
algorithm starts at )0,0,0(),,( =⇔= IIIII qyxp θ . In this experiment, all the neighbours 

around Iq  have lower cost, thus six paths leave from )0,0,0( . Two iterations later, only 

two paths are still promising:   
 

...)3,0,2()2,0,2()2,0,1()2,0,0()1,0,0()0,0,0( →→→→→→  

...)3,1,1()2,1,1()1,1,1()0,1,1()0,1,0()0,0,0( →→→→→→  
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Notice that the paths do not intersect each other, since each neighbour is compared 

to all candidates in the set before being analysed. Notice also that, in this case, the 
general direction is similar for both paths. The two paths are scanning the whole grid in 
the θ+  sense progressing almost parallel to each other. The best result is the one that 

achieves the leaf with the lower cost, (4.29). 
The main pitfall of Error Descent is local minima. A short displacement in the 

coordinates might lead to the inclusion or exclusion of some samples in the last slots of 
the point-to-point distribution, inducing significant changes in the Likelihood Test 
parameters. A second cause of point-to-point distance changes, albeit less important, is 
the discrete nature of the histogram: when moving the candidate posture, some samples 
may fall in another slot, changing the distribution by discrete amounts. Using only six 
neighbours reinforces the effects of these two issues: it is possible that the cost diminishes 
between kq  and some of its twenty-six neighbours, and yet it increases when the steps in 

each direction are considered separately. 
 A second difficulty is the determination of an optimal step. If the step is too small, 

the algorithm progresses very slowly. If the step is too large there is a poor resolution 
between adjacent postures, and the algorithm might stop at a given posture after it had 
“jumped” over a better result.  

To overcome the two problems a multiple resolution variant was implemented. In 
the first run, the steps between a candidate and its neighbours are large (e.g., 0.05m and 
0.005rad). This sows some candidates "far" away of the initial posture, jumping over 
possible local minima and accelerating the exploration of the grid. The second run 
discards the intermediate branches leading to the leaves and starts from the set of 
posture candidates (leaves) computed on the first run but the steps are divided by two. In 
order to keep the integer coordinates coherent, the values of the leaves iq  are multiplied 

by two before the start of the second run. 
The third and following runs repeat the procedure until very small steps are 

considered (e.g., 0.001m and 0.001rad). The initial steps and the number of runs may be 
defined by the user to match the experiment conditions, the hardware computation speed 
and the mission requirements. 

 
When the path search is complete, the candidate posture (leaf) with the lower cost, 

min,)(cos)(cos:),,( minminminminmin ≠∀<= === kkqtqtnnnq kkYkXk θ , is selected as the best 

posture estimate. The grid coordinates are converted into the world reference metrics, 
(4.33). 

 
),,( minminminmin θθ δθδδ ⋅+⋅+⋅+= === kIXYkIXXkI nnynxp  (4.33) 

 
If the cost is lower than the accuracy requirements, the best posture is published. 

Otherwise, the algorithm ends with failure. 
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4.4 Experimental Results 
 
This section presents the comparative results of the two Approximate Localisation 

algorithms, based on a common set of experimental data. The scenarios chosen are the 
same as in Chapter 3, Section 4: the classroom and the office. The “factory” is not 
presented since the Reference Transform algorithm fails in that environment due to the 
poor map, and reduced number of reliable natural landmarks within the range of 
operation of the laser scanner. The Error Descent results, with a limited degree of success 
were presented before (see Chapter 3, Section 4). 

The results of Reference Transform are presented first, followed by the results 
computed with Error Descent. Finally, the point-to-point distance distribution is 
compared for the two Approximate Localisation algorithms. 

 

4.4.1 The classroom 
 
In Figure 10 the laser scan of the classroom is presented with circles, superimposed 

on the simulated scan defined from the initial posture estimate, represented by the thin 
continuous line. The invalid range readings were removed. 

 

 
Figure 10 – Detected landmarks for Reference Transform 
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The Reference Transform algorithm was run with a sliding window of size 4=W . 
The maximum shift between the simulated scan and the laser scan is 8=Z . The average 

inner threshold is 05.0<InnerThr , corresponding to an angle of 05.02 ±± π  ( º3º90 ±± ). 

Under these conditions, four corresponding landmark pairs were found in the simulated 
scan and the laser scan, (Figure 10). The initial posture estimate was computed by Frame 
Localisation. 

 
In the figures below the simulated scan and the laser scan around the four 

landmark pairs used with Reference Transform are presented before (left) and after 
(right) the algorithm was run using simultaneously the four landmark pairs (Figure 10).   

 

  
(a) – First landmark (bottom left corner of Figure 10) 

  

(b) – Second landmark (bottom right corner of Figure 10) 
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(c) – Third landmark (bottom right corner of Figure 10) 

  

(d) – Fourth landmark (top right corner of Figure 10) 

Figure 11 – Adjusting the simulated scan to the laser scan with Reference Transform 
 
Since the spatial resolution of the laser scanner reduces as the range augments, the 

scale used in Figure 11 varies to embrace the full landmark pair. However, the distance 
between markers is constant (0.1m) to improve the compared analysis. It should be 
noticed that the simulated scan exhibits small variations, since the estimate posture 
relative to the scenario is updated in the process. 

The convention in the legend is the same as before: squares (or diamonds) represent 
the simulated scan, while circles represent the laser scan. From visual inspection only of 
the left columns in Figure 11, one concludes that the two scans are aligned and therefore 
the required angle correction is negligible. Regarding the position in the XY-axes, the 
simulated scan should move to the left and upwards to match the laser scan although the 
fourth landmark (Figure 11d) suggests that a displacement to the left suffices to match 
the two scans. 
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The experimental results, illustrated in Figure 11 at the right column, confirm this 
impression. They were obtained after a single iteration of Reference Transform, using the 
four landmarks. The correction vector computed with Reference Transform is 

 
)rad1080.7,m0188.0,m0248.0(),,( 4−×−−=PPP yx θ . 

 
The initial and refined estimates are presented in Table 1 with the Likelihood Test  

(LT) moments (see Chapter 3, Section 3). The number of valid pairs is 1753 in both cases.  
 

Algorithms Posture Estimates Likelihood Test moments 

 
 

x 
[m] 

y 
[m] 

θ 
[rad] 

MP EV 
[m] 

Dispersion  
[m] 

Frame 
Localisation 

 
1.0992 

 
3.1116 

 
0.0469 

 
1457 

 
0.02838 

 
0.04045 

Reference 
Transform 

 
1.12645 

 
3.0920 

 
0.04612 

 
1456 

 
0.02811 

 
0.05217 

correction 0.02725 -0.01963 -0.78×10-3 - - - 

Table 1 -  Approximate Localisation results with Reference Transform 

 
The point-to-point distance distributions are shown in Figure 12, with the Reference 

Transform in the foreground (lighter) and the Frame Localisation in the background 
(darker). 

 

 
Figure 12 – Comparing Reference Transform (lighter) with Frame 

Localisation (darker) 
 
The correction is more apparent in the distribution (Figure 12) than in the Expected 

Value (EV), (Table 1). This is due to the fact that the original posture estimate, computed 
by Frame Localisation is already a good estimate; the expected value is 0.02838m, while 
the typical expected value due to the laser only is around 0.02m. In addition, since the 
fitting is based on four samples only, it may occur that the point-to-point distance 
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increases in some cases, denoted by the increased number of hits in slots 12 to 19 with 
Reference Transform (see Figure 12). Since the pairs with higher distance weigh more to 
the Expected Value and Dispersion, the posture enhancement may appear smaller. 

 
The Error Descent algorithm was applied to the same initial posture estimate 

supplied by Frame Localisation. The Error Descent was run with an initial step of 0.05m 
and 0.005rad (0.3º) and seven iterations (the final step is less than 0.0008m and 
0.00008rad (0.0045º)). 

A summary of the results of the iteration sequence is presented in Table 2. For each 
iteration, the number of leaves, the posture estimate coordinates, both in grid coordinates 
and metric coordinates, and the associated Expected Value (EV) are presented. The 
Expected Value is used instead of the cost, (4.29), because the difference between valid 
pairs and match pairs is constant throughout the iterations.  

The grid coordinates ( kq ’s ) are associated to the scale of the last iteration (with the 

smaller steps) to create a uniform measure of distance and allow the comparison between 
iterations. 

 

iteration # leaves optimal iq  optimal ip  

[m, m, rad] 

optimal  
EV [m] 

initial - 0 0 0 (1.0992, 3.1116, 0.0469) 0.02838 

1 1 0 0 0 (1.0992, 3.1116, 0.0469) 0.02838 

2 4 32 0 32 (1.1242, 3.1116, 0.0494) 0.02298 

3 12 32 -16 16 (1. 1242, 3.0991, 0.04815) 0.02278 

4 69 32 -8 0 (1. 1242, 3.10535, 0.0469) 0.02270 

5 313 28 -8 12 (1.12108, 3.10535,0.04784) 0.02236 

6 1553 24 -14 38 (1.11795, 3.10066, 0.04987) 0.02195 

7 6933 35 -1 -6 (1.12654, 3.11082, 0.04643) 0.02189 

Table 2 -  Approximate Localisation results with Error Descent 
 
Not surprisingly, the overall results are better than with Reference Transform. In 

fact, since the measure of quality is established by the Likelihood Test, any method based 
on optimising the LT moments would lead to the optimal estimate. 

At the end of each iteration, the number of remaining leaves initiates the next 
iteration. Thus, in general, there is not a inheritance relation between the optimal 
estimate at iteration k, and the optimal estimate at iteration k+1. 

The point-to-point distance distribution for the optimal posture is shown in Figure 
13, with Error Descent in the foreground and Frame Localisation in the background. 
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Figure 13 – Comparing Error Descent (lighter) with Frame Localisation 

(darker). 
 
It should be noticed that after the second iteration, where the EV drops to 0.2298 

and the steps are 0.025m== YX δδ  and 0.0025rad=θδ  (0.14º), the enhancements are 

negligible – about one millimetre less in EV. Most often, these enhancements correspond 
to adjusting the data to fit some samples with high pair-to-pair distance, a side effect of 
the Likelihood Test form. It would be necessary to reduce the weight granted to postures 
located at the right of the histogram to minimise this effect. 

All subsequent operations, which take about 90% of the run time of Error Descent, 
are of little relevance for localisation purposes. Although the optimal step and number of 
operations are difficult to define, the proposed number of iterations is exaggerated. The 
number of iterations was chosen for illustration purposes only. In regular field trials, four 
iterations suffice for simple environments and five are used for scenarios like the 
“factory”. Any further operations will have little effect on the estimate quality. 

 
Finally, the refined estimates yielded by the two Approximate Localisation 

algorithms are compared in Table 3. The point-to-point distance distributions are 
compared in Figure 14, where Reference Transform is in the background (darker) and 
Error Descent is in the foreground (lighter). 

 

Algorithms Posture Estimates Likelihood Test moments 

 
 

x 
[m] 

y 
[m] 

θ 
[rad] 

MP EV 
[m] 

Dispersion  
[m] 

Reference 
Transform 

 
1.12645 

 
3.0920 

 
0.04612 

 
1456 

 
0.02811 

 
0.05217 

Error 
Descent 

 
1.12654 

 
3.1108 

 
0.04643 

 
1456 

 
0.02189 

 
0.04589 

difference 0.00009 0.0188 0.31×10-3 0 -0.00622 -0.00628 

Table 3 -  Comparing Error Descent with Reference Transform 
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Figure 14 – Comparing Error Descent (lighter) with Reference Transform 

(darker) 
 
In the posture estimates, only the difference in Y is significant. This had been 

suggested by the misalignment of the fourth landmark in Reference Transform, (Figure 
11d). Perhaps, there is a systematic error in a large extension of the laser scan that is 
minimised with Error Descent but not in Reference Transform. This effect is visible in the 
columns from 2cm to 6 cm (Figure 14). Notwithstanding, both algorithms met the 
accuracy specifications and proved to be adequate to this environment. 

 

4.4.2 The office 
 
A large number of experiments were run in the office room. Two of them were 

illustrated in Chapter 3, Section 3.4.2. In this section, the first experiment presented in 
trial (a) is resumed with the two Approximate Localisation algorithms. The second 
experiment (trials (b) and (c)) are not mentioned since the Reference Transform results 
are based on the same features as trial (a). Instead, a new experiment – trial (d) - is 
introduced with laser data measured from a different location. 

The Reference Transform algorithm was run with a sliding window of size 4=W . 
The maximum shift between the simulated scan and the laser scan is 16=Z . The average 

inner threshold is 1.0<InnerThr , corresponding to an angle of 1.02 ±± π  ( º6º90 ±± ). In 

this experiment, only two landmarks were detected (Figure 15). This is a result of the 
office structure: two walls are covered with windows, and few corners are visible. 
Notwithstanding, the Reference Transform updated successfully an initial estimate 
computed by Frame Localisation. 
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Figure 15 – Trial (a): detected landmarks for Reference Transform 

 
The figures below represent the laser scan and the simulated scan around the two 

landmark pairs before Reference Transform in the left column and afterwards in the right 
column. In Figure 16 the diamonds represent the simulated scan while the circles 
represent the laser scan. The distance between markers is 0.05m. 

 

  

(a) – First landmark (bottom right corner of Figure 15) 
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(b) – Second landmark (top right corner of  Figure 15) 

Figure 16 – Trial (a): adjusting the simulated scan to the laser scan  
 
By examining the figures, it is clear that the two scans are nearly aligned and the 

correction in position is small. Because there are only two landmarks, the system solution 
led to an almost exact match (Figure 16b), while the other accommodates the error due to 
the residual differences between the laser scan and the simulated scan. 

The correction posture is  
 

)rad1054.3,m0395.0,m0043.0(),,( 3−×−−−=PPP yx θ . 

 
The initial and refined estimates are presented in Table 4, with the Likelihood Test 

moment. The number of valid pairs is 1738.  
 

Algorithms Posture Estimates Likelihood Test moments 

 
 

x 
[m] 

y 
[m] 

θ 
[rad] 

MP EV 
[m] 

Dispersion  
[m] 

Frame 
Localisation 

 
4.1368 

 
2.4759 

 
-0.0186 

 
956 

 
0.05876 

 
0.11125 

Reference 
Transform 

 
4.1237 

 
2.4510 

 
-0.0151 

 
977 

 
0.05807 

 
0.11454 

correction -0.0131 -0.0249 -3.5×10-3 - - - 

Table 4 -  Trial (a): Approximate Localisation results with Reference Transform 
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There is an enhancement in the number of Mathc pairs (MP) and in the Expected 

Value (EV). The additional dispersion is due to the increased number of MP detected in 
Reference Transform. Since these pairs have high point-to-point distance, their 
contribution to the distribution dispersion is significant. 

The point-to-point distance distributions in Figure 17 show the Reference Transform 
histograms in the foreground (lighter) and the Frame Localisation histogram in the 
background (darker). There are some enhancements in the first classes (from 1cm to 8cm), 
at the expense of an increased number of samples in the last slot.  

 

 
Figure 17 – Trial (a): comparing Reference Transform (lighter) with Frame 

Localisation (darker) 
 
The overall enhancement is modest due to the reduced number of landmarks and 

uneven landmark distribution around the robot. 
 
The Error Descent was run with an initial step of 0.05m and 0.005rad (0.3º) and five 

iterations (the final step is 0.003125m and 0.0003125rad (0.018º)). It should be noticed 
that the iq ’s in this experiment correspond to steps four times as large as the steps in the 

classroom. The algorithm evolution is traced in Table 5. The number of Valid Pairs is 
1738 and the number of Match Pairs increases from 956 to 967 as the algorithm 
progresses. 

iteration # leaves optimal iq  optimal ip  

[m, m, rad] 

optimal  
EV [m] 

initial - 0 0 0 (4.1368, 2.4759, -0.0186) 0.05876 

1 1 0 0 0 (4.1368, 2.4759, -0.0186) 0.05876 

2 3 0 -8 16 (4.1368, 2.4509, -0.0136) 0.05527 

3 6 0 -8 16 (4.1368, 2.4509, -0.0136) 0.05527 

 
4 

 
16 

0 
0 

-6 
-6 

12 
10 

(4.1368, 2.4572, -0.01485) 
(4.1368, 2.4572, -0.01548) 

 
0.05484 

5 90 0 -7 11 (4.1368, 2.4540, -0.01516) 0.05482 

Table 5 –  Trial (a): Approximate Localisation results with Error Descent 
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In the fourth iteration, there are two close candidate postures (leaves) with 
approximately the same weight. Accordingly, the best posture estimate found in the fifth 
iteration lies between them. The point-to-point distance histograms are presented in 
Figure 18. The enhancement with Error Descent is significant, although the number of 
instances in the last slot also increases, albeit less than with Reference Transform. 

 

 
Figure 18 – Trial (a): comparing Error Descent (lighter) with Frame Localisation (darker) 

 
The comparative analysis of the two Approximate Localisation algorithms is 

illustrated in Table 6 and in Figure 19.  
 

Algorithms Posture Estimates Likelihood Test moments 

 
 

x 
[m] 

y 
[m] 

θ 
[rad] 

MP EV 
[m] 

Dispersion  
[m] 

Reference 
Transform 

 
4.1237 

 
2.4510 

 
-0.01506 

 
977 

 
0.05876 

 
0.1145 

Error 
Descent 

 
4.1368 

 
2.4540 

 
-0.01516 

 
967 

 
0.05482 

 
0.1118 

difference 0.0131 0.003 0.1×10-3 -10 -0.00394 -0.00628 

Table 6 -  Trial (a): comparing Error Descent with Reference Transform 

 
The difference in the X-axis is due to the poor discrimination of error in the 

horizontal axis in Reference Transform. Notice that in Figure 15 the two landmark pairs 
are located at approximately the same coordinate in the X-axis. Thus, correcting the x-
estimate based on these two samples only emphasises the effects of systematic laser 
errors.  
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The difference in the Expected Value (EV) and dispersion moments is manly due to 
the extra instances in the last slot. The Reference Transform includes 128 instances while 
the Error Descent includes only 119. The extra “cost” in the EV due solely to these nine 
instances is 0.00274.  

 

 
Figure 19 – Trial (a): comparing Error Descent (lighter) with Reference 

Transform (darker) 
 
In this experiment, the Reference Transform was pushed to its limits. Although the 

Localisation is possible with two landmarks only, it is prone to errors that might prevent 
the desired posture estimate refinement. On the other hand, the Error Descent results 
suggest that the computation effort may be reduced by a large fraction (approximately 
80% to 90%) without significant loss of accuracy. Therefore, the main cause restraining 
the use of Error Descent loses importance.  

 
In the second trial, termed Trial (d) to avoid confusion with previous trials 

presented in Chapter 3, Section 4.2, the robot was located close to the file cabinets in the 
west wall, (Figure 20). The parameters in this trial are the same as before. Three 
landmark pairs are detected from this location. 
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n
orth

 w
all 

Figure 20 – Trial (d): detected landmarks for Reference Transform 
 
The first relevant note is the increased accuracy and significance, relative to the 

previous trial, of the initial posture estimate computed by Frame Localisation, due to the 
extra data on the south wall. This corresponds to the metallic blind that was lowered 
during the trial and was added to the scene map, as described in Trial (c), see Chapter 3, 
Section 4. The figures are summarised in Table 7 and illustrated in Figure 22.  

 

  
(a) – First landmark (bottom right corner of Figure 20) 
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(b) – Second landmark (top right corner of Figure 20) 

  

(c) – Third landmark (top left corner of Figure 20) 

Figure 21 – Trial (d): adjusting the simulated scan to the laser scan with Reference 
Transform 

 
The three landmark pairs are presented in Figure 21 as in previous trials. The 

simulated scan and laser scan before Reference Transform are presented on the left while 
the simulated and laser scans after the algorithm are presented on the right. 

The correction posture computed with one iteration of Reference Transform and 
using simultaneously the three landmark pairs is: 

 
)rad10835.4,m035778.0,m028695.0(),,( 3−×−−=PPP yx θ . 

 
Running additional iterations doesn’t increase the estimate’s quality since the three 

landmarks do not require the same correction. The Likelihood Test parameters are 
presented in Table 7. The number of Valid Pairs is 1758. The point-to-point distance 
histograms are illustrated in Figure 22. 
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Algorithms Posture Estimates Likelihood Test moments 

 
 

x 
[m] 

y 
[m] 

θ 
[rad] 

MP EV 
[m] 

Dispersion  
[m] 

Frame 
Localisation 

 
5.3274 

 
4.0349 

 
1.5637 

 
1300 

 
0.02778 

 
0.056 

Reference 
Transform 

 
5.3365 

 
4.0248 

 
1.5685 

 
1301 

 
0.02604 

 
0.0527 

correction 0.0091 -0.0101 4.835×10-3 - - - 

Table 7 -  Approximate Localisation results with Reference Transform 

 

 
Figure 22 – Trial (d): comparing Reference Transform (lighter) with Frame 

Localisation (darker) 
 
In spite of the high quality of the Frame Localisation estimate, the Reference 

Transform successfully refined the posture. Apart from the robot location, the main 
difference from Trial (a) to Trial (d) is the addition of lowered blind, both in the scan and 
in the map data. This offers an extra landmark pair in the opposite wall in Trial (d). 
Comparing Trial (d) with Trial (a), the Expected Value (EV) and Dispersion were reduced 
to half the values, approximately. In addition, the number of match pairs increased from 
956 to 1300. A more adequate positioning of the laser sensor and the inclusion of the 
blinds in the map description contributed to this result. It also contributed to the extra 
landmark pair detected by Reference Transform in the top left corner. 

This new positioning reveals the difficulties of Reference Transform in presence of 
noisy laser data. In particular, the second landmark (Figure 21b) shows an irregular 
profile just after the detected landmark that prevented the corner detection. To proceed 
with the algorithm, the first sample after the landmark was manually classified as an 



144 4. APPROXIMATE LOCALISATION 
 

outlier and the algorithm discarded it. The posture update embedded in (4.24) 
automatically weighs the various conflicting corrections determined by each of the 
equations in (4.20). The major correction is performed in orientation. The combined effects 
of orientation plus translation update results in larger shift in the X-axis direction for the 
first landmark (Figure 21a), whereas the third landmark was shifted mainly in the Y-axis 
direction (Figure 21c) and the second landmark appears to have little correction, since it 
is closer to the robot location, where the orientation correction represents a lower spatial 
correction. 

 
The Error Descent algorithm was run with the same parameters as in the previous 

trial. The number of Valid Pairs is 1758 and the number of Match Pairs varies from 1300 
to 1303. The progression of the algorithm is shown in Table 8 and the point-to-point 
distance histograms are shown in Figure 23. 

 

iteration # leaves optimal iq  optimal ip  

[m, m, rad] 

optimal  
EV 

initial - 0 0 0 (5.3274, 4.0349, 1.5637) 0.02778 

1 2 0 0 16 (5.3274, 4.0349, 1.5687) 0.02702 

2 3 0 0 16 (5.3274, 4.0349, 1.5687) 0.02702 

3 17 4 -4 16 (5.3399, 4.0224, 1.5687) 0.02504 

4 61 0 -2 18 (5.3274, 4.0287, 1.5693) 0.02497 

5 223 1 -4 14 (5.3305, 4.0224, 1.5681) 0.02481 

Table 8 -  Approximate Localisation results with Error Descent 
 

 
Figure 23 – Trial (d): comparing Error Descent (lighter) with Frame 

Localisation (darker) 
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The correction required to enhance the Expected Value (EV) is concentrated in the 

orientation (0.044rad = 0.25º).  The histograms in Figure 23 show that a significant 
weight in the first slot (125 instances less) is moved towards the right as a necessary cost 
to reduce the number of samples in the middle of the histogram (between slots 3cm to 
14cm, the number of instances is reduced by 98). This is a typical result of Approximate 
Localisation, although the effect in the first slot is more apparent than usual. The overall 
result is a moderate enhancement in the Likelihood Test parameters. 

 
In Trial (d), the results of the two Approximate Localisation algorithms are similar, 

as it can be verified in Table 9 and Figure 24. 
 

Algorithms Posture Estimates Likelihood Test moments 

 
 

x 
[m] 

y 
[m] 

θ 
[rad] 

MP EV 
[m] 

Dispersion  
[m] 

Reference 
Transform 

 
5.3365 

 
4.0248 

 
1.5685 

 
1301 

 
0.02604 

 
0.05274 

Error 
Descent 

 
5.3305 

 
4.0224 

 
1.5681 

 
1303 

 
0.02481 

 
0.05033 

difference -0.006 -0.0024 0.4×10-3 2 -0.00123 -0.002409 

Table 9 - Comparing Error Descent  with Reference Transform 

 

 
Figure 24 – Trial (d): comparing Error Descent (lighter) with Reference 

Transform (darker) 
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4.5 Comparing the Approximate Localisation algorithms 
 
The two Approximate Localisation algorithms follow opposite approaches to the 

problem of posture estimate refinement. Although the Reference Transform is more 
efficient and aesthetically more elegant, the Error Descent is far more robust even though 
requiring a computation time that can be 1000 times longer. 

In good operation conditions, the quality of the results is similar. The Reference 
Transform is less tolerant to adverse conditions, while the Error Descent very seldom fails 
to provide some posture enhancement. As the RESOLV project progressed, the latter 
trials were conducted in conditions where the Reference Transform failed due to the 
absence of adequate maps and landmarks or because the laser data was too noisy. The 
noise in the laser data depends on the laser but also on the reflectance of the scanned 
surfaces. In addition, the laser was operated close to its operation range, which reduces 
the quality of the estimates. On the other hand, using fewer iterations, the computation 
effort associated to Error Descent may be reduced by a factor of five to ten with negligible 
effects on the estimate’s accuracy. 

Due to its superior performance, the automatic implementations of Approximate 
Localisation use only the Error Descent algorithm, and the experimental results 
presented in Chapter 3 are all based on Error Descent, since they were obtained in actual 
field trials. 

 
The parameters to be defined by the user in Reference Transform are: the length of 

the sliding window, the length of the search window for matching landmark pairs and the 
inner product threshold for detecting a landmark. The linear approximation boundaries 
are not controlled by the user since its tolerance is much wider than the overall tolerance 
of the algorithm. 

The length of the sliding window is determined by map constraints. If the sliding 
window is too long, it might encompass more than one scene feature, concealing the 
landmark. On the other hand, if the sliding window is too short, the results are too 
sensitive to angle of incidence variations and minor features in the scene map, especially 
in 3D reconstructed maps. In most experiments, the sliding window varies from nine 
( 4=W ) to fifteen ( 7=W ) samples. 

The length of the search window is determined by the distance between the laser 
scan and the simulated scan. If the two scans are very close – measured by the point-to-
point distance distribution - or if the surfaces vary rapidly, a small search distance will be 
adequate to detect the exact match. If the two scans are quite different or if the surfaces 
are smooth, the search window should be wider. In case the scans are very different and 
Reference Transform detects few landmark pairs, it might be worthwhile running the 
algorithm again with a wider window. Typical search interval range from twelve ( 6=Z ) 
to forty ( 20=Z ) samples. 

The inner angle threshold depends on the nature of the landmarks and the quality 
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of the map data and the scan data. If the room has square angles, the threshold is 
determined by the quality of the map data and the scan data. Otherwise, the threshold is 
determined by the angle in the surfaces meeting at the selected natural landmarks. In 
case the map or scan data are poor, the threshold must be relaxed to accommodate higher 
errors, as in the office experiments. 

 
 
The Error Descent algorithm has fewer parameters left to the operator for tuning. 

The number of iterations controls the accuracy and the computation time, while the linear 
and angular steps control the maximum leap between adjacent postures in the first run. 
These three parameters are far more intuitive to the operator, therefore the results are 
less exposed to tuning errors. Again, Error Descente is superior to Reference Transform. 

In spite of all the advantages mentioned, the Error Descent has a subtle pitfall. 
Because the algorithm is based on the cost measure, it always converges to the lower cost, 
hence yielding an apparent high quality estimate. However, the Likelihood Test does not 
react to the scan differences in the same manner as the human operators. Humans learn 
to discard outliers and irrelevant errors, while Likelihood Test grants extra emphasis to 
the samples with larger point-to-point distance. The Likelihood Distance extension tries 
to cope with this issue using a modulator factor to reduce the relevance of higher distance 
instances.  

Notwithstanding, the Error Descent algorithm might “anchor” in an estimate that is 
optimal regarding the Likelihood Test parameters, but are wrong from the human 
operator’s point of view. This is the result of an effort to minimise the point-to-point 
distance associated to some particular instances that are clearly outliers for the trained 
human operator, as in Chapter 3, Section 4, Trials (b) and (c) in the office. This occurs 
most often in the presence of non-mapped features “fit” in the available map by the 
algorithm. Although this solution is correct because the existing map is the ultimate 
ground truth, this result is clearly undesirable for the human operator. 

There are two ways to overcome this difficulty. The best one is to add the feature to 
the map, when necessary. This was the path followed in the experiment illustrated in 
Chapter 3. The second one is to analyse the graphical results yielded by the algorithm, 
search for intermediate steps, and determine the best posture estimate from visual 
inspection of the graphics and Likelihood Test moments. 

 
The final step of Approximate Localisation is a validation with Likelihood Test 

using parameters that are more stringent than the ones used in the validation of Frame 
Localisation. If the test passes, the solution is published and the algorithm terminates 
with success. However, if the test fails the Approximate Localisation algorithm ends with 
failure. In case Frame Localisation has not been run because the initial posture estimate 
was supplied by an external source, it is called at this stage. 
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In automatic implementations, if the validation tests run after Approximate 
Localisation fail, the posture estimate is always published. This solution serves the 
overall RESOLV mission. The other modules are informed by the Localisation 
termination state that the estimate is poorer than required but they still have a posture 
estimate to work with. 
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