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Chapter 2 
 

Frame Localisation Algorithm 
 
The Frame Localisation Algorithm is based on surface identification and matching. 

In indoor environments with a reasonable degree of structure, there are many vertical 
surfaces: doors, windows, furniture and, usually, the free space around the robot are 
bounded by a set of vertical walls. If a sufficient number of vertical features is present in 
the map used by Localisation, then a wide horizontal laser scan will almost certainly 
capture some of these and it will be possible to compute a correspondence between the 
lines detected from the laser range scan and the map lines. Exceptions may occur in a few 
peculiar rooms or if the surfaces are not suited to feature extraction. 

Frame Localisation performs localisation without any prior estimate of the robotic 
device posture. The only data required by Frame Localisation is an external map of the 
room where the system is operating. This map may be computed from the already 
reconstructed model or supplied from an off-line map. It contains the absolute reference to 
establish the system co-ordinates ),,( θyx . Frame Localisation relies on a 2D horizontal 

laser scan to extract and match features visible from the current posture to similar 
features on the map. 

Frame Localisation requires a piece-wise horizontal floor to perform adequately and 
it processes data on two dimensions only, to reduce the computation effort. However, 
under certain configurations, the procedure can be repeated at different heights to 
increase robustness. 
 

 
Chapter Organisation 
 
The motivation for Frame Localisation is presented in Section One. Section Two 

contains the algorithm outline. The formal development of the geometric algorithm is 
presented in Section Three. Section Four discusses the second part of the algorithm, 
which includes a clustering procedure. Some implementation issues and constraints are 
discussed in Section Five. The discussion of the algorithm accuracy and the analysis of 
experimental results is postponed until Chapter Three where the adequate error metrics 
is defined. Finally, Section Six illustrates the Frame Localisation algorithm with images 
computed from actual trials. 



28 2. FRAME LOCALISATION ALGORITHM 
 

2.1 Motivation 
 
The localisation problem under study is stated as the computation of a planar 2D 

position plus orientation posture ),,( θyx  (Figure 1). The Frame Localisation requires a 

two-dimension map and a planar laser-scan to compute the system (or robot) posture. 
This section introduces the method by use of a hypothetical environment being 
reconstructed by a robot equipped with the laser scanner only.  
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Figure 1 – The co-ordinate system 

 
Let’s assume a sample environment is being reconstructed as represented in Figure 

2. The current map (Figure 3) encompasses only a fraction of it. This map is composed of 
planar curves, most often 2D lines, abbreviated as “map lines”. The map is often obtained 
from the reconstructed 3D model, but it can be provided from an off-line source like a 2D 
architectural plan. In Figure 4, the map is superimposed to the environment. 

 

 

 

 

 
Figure 2 – The scene Figure 3 – The partial reconstructed 

map 
Figure 4 – Map over 

the scene 
 
The second element is the laser range scan. In order to compare the horizontal laser 

range data to the map, the range data is transformed in a set of planar curves, most often 
2D lines. Each line is defined by its vertexes relative to the co-ordinate frame associated 
to the robot (Figure 5). 

Because there is no auxiliary posture estimate, the line extracted from the laser 
range scan, abbreviated as “scan line”, can match any line on the environment, provided 
the length of the scan line is shorter than the map line. The scan line also matches the 
map line on the symmetric orientation (Figure 6 and Figure 7). 
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Figure 5 – A line referenced 
to the robot co-ordinates 

Figure 6 - First hypothesis 
for line matching 

Figure 7 – Second 
hypothesis for line matching 

 
Moreover, the scan line can slide along the map line, defining the loci of the possible 

locations for the robot given the assumption the scan line matches the particular map line 
chosen (Figure 8). In case the scan line matches the candidate map line, the orientation 
angle is immediately known (with a second estimate rotated by π  rad (180º)) and the 

posture is constrained to the possible loci segment. 
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Figure 8 – The possible loci of the robot based on a scan line-map line pair 
 
The localisation problem has been reduced to a one-dimension problem that can be 

solved by selecting a second line, which must not be parallel to the first one. The figures 
depict orthogonal lines for clarity reasons and also because this is the most common case. 
However, the algorithm works with any pair of convergent lines. The two lines define two 
segments of possible location, if considered separately (Figure 9 and Figure 10). When 
considered simultaneously they define a single point in the ),,( θyx  space (Figure 11) to 

be the candidate solution to the localisation problem. 
Similar to Figure 6 and Figure 7, the two scan lines generate similar geometric 

constraints on the other side of the map lines. However, these were omitted for clarity 
sake. 

Each pair of non-parallel lines, built from either the map or the scan data is a 
frame, the core object of the algorithm. 
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Figure 9 – The first line 
constraint defines one 
possible loci segment 

Figure 10 – The second line 
constraint defines a new 

possible loci segment 

Figure 11 – The joint 
constraints define a single 

common point. 
 
Using the multiple lines available from the map description and the laser range 

scan it is possible to associate the lines in pairs, building multiple frames, and repeat the 
process until a coherent pattern appears. In Figure 12 to Figure 15 some pairs are 
matched and the result is shown in Figure 16. 

 

Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 
 

Long pairs generate few matches 
Small pairs 

generate more 
matches 

 
The final result 

 
It should be emphasised that the same scan lines may be combined with different 

non-parallel scan lines to compute different match candidates. The examples in Figure 12 
to Figure 15 encompass only four scan lines, associated in multiple frames. It is 
reasonable to expect that long scan lines fit few map lines (e.g., Figure 12), whereas small 
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lines fit different pairs of map lines (Figure 15). 
As Figure 16 shows clearly, the four different matches indicate a common ),,( θyx  

posture and some spurious results due to environment symmetry; other spurious results 
laying outside the depicted area where the robot moves were suppressed for clarity 
reasons. 

 

2.2 Frame Localisation Outline 
 
The Frame Localisation algorithm operation flow is illustrated in Figure 17, where 

the operations represented by the shaded blocks, although necessary, are not strictly part 
of Frame Localisation. The algorithm starts with two lists of data, one from the map, the 
other evaluated from the horizontal laser range scan. The two lists are processed into a 
pair of new lists, the frame lists. Afterwards, a correspondence between compatible 
elements of both frame lists is established. The necessary condition for matching one scan 
frame to one map frame is that the scan frame axes fit within the map frame axes. For 
each successful match the co-ordinate transform is computed, producing a candidate 
posture estimate.  Finally, all estimates are classified and sorted. The algorithm outcome 
is the possible posture list. 

In order to validate the possible posture list, a simulated scan is computed as if the 
laser scanner was at each posture in the list and the result is compared with the real 
scan. On success, the postures are passed into the plausible posture list. This 
algorithm, depicted by the three shaded blocks, is described in Chapter 3. 
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Figure 17 – Frame Localisation operation flow 
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Frame Localisation is based on feature extraction and matching; the features 
currently extracted are straight lines, although the algorithm is compatible with other 2D 
curves, namely bi-quadratic. The RESOLV surface maps also implements bi-quadratic 
surfaces. The proposed extension was not implemented since the most environments have 
rich linear content and poor bi-quadratic content and this extension would increase 
significantly the computational burden.  

 
A preliminary step of the algorithm is the extraction of the 2D profiles. 
The techniques used to create the map profiles depend on the type of map used. If 

the map is obtained from the RESOLV’s 3D Reconstruction algorithms, the 2D map 
results from the intersection of the extracted 3D surfaces with a horizontal plane at 
height h, where h is the distance to the ground of the centre of rotation of the laser 
device. If the map is available beforehand, the data processing depends on the source data 
type. It may be the raw vertexes obtained from a paper plan marked on a digitizer table, 
the set of lines measured manually and put into a coherent frame, etc.. The methods used 
to translate the maps into the line lists are detailed in Appendix B. 

The extraction of the line profiles from the laser data is a complex and delicate task 
if one wants to constrain the error propagation and, simultaneously, encompass the 
widest range of cases. It should be emphasised that the nature and statistics of the 
surfaces in the environment are unknown beforehand. All the issues mentioned in the 
Introduction (Section 1.4), about the laser errors contribute to degrade the raw data 
quality. In order to get some insight on the data statistics, the reflectance data is 
considered along with the range data.  

The line extraction algorithm begins with an array of laser samples, representing a 
circular scan centred on the laser device. Each sample holds the distance from the laser to 
the nearest obstacle in the laser beam direction as well as the reflectance of the obstacle. 
The first step of the method is to split the wide-angle laser profile into a set of angular 
segments, using both range and reflectance data. Each segment contains a contiguous 
sets of points, describing one surface or multiple adjacent surfaces. Then, for each 
segment, the Least Square Estimation (LSE) is used to assert if the considered segment is 
a straight line. Restricting the analysis to straight lines simplifies the LSE procedure, 
which is implemented in an efficient iterative form, represented by six parameters only. 
The linear condition test is quite stringent. If the test succeeds, the segment is replaced 
by its vertexes; if the test fails, the segment is split in two. This is where the iterative 
form proves its benefits, since it suffices to compute the parameters for one of the sub-
segments and subtract them from the whole segment parameters to get the two sub-
segment parameters. The procedure is applied recursively until all the sub-segments are 
transformed into lines or they are small enough to be discarded. The final step of the 
algorithm is to merge the elementary line segments into longer segments. 

The method is detailed and formalised in Appendix C. 
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Once the two sets of line segments are extracted from the laser range scan and the 
environment map, the line segments are grouped into geometric entities, hereinafter 
called frames. A frame is defined by two non-parallel line segments, named axes. The 
crossing point of the two axes, or their extensions, is the frame origin. In Figure 18, three 
frame examples are shown. 

 
axis 2
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axis 1
origin

origin

origin
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axis 1 
Figure 18 – Frame examples 

 
The frame definition encompasses two types of variables: local parameters and 

global reference variables. There are five local parameters (Figure 19): the start and end 
points of both axes, i.e., the distance from the origin to the start of the axis and the 
distance from the origin to the end of the axis, and the inner angle between the two axes, 
θ . The axis size, an important parameter in the subsequent computations, is readily 
available as 2211 , startendstartend −− . The local parameters are independent of the co-

ordinate system. 
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Figure 19 – Frame local parameters  
 
The global variables define the origin’s posture (Figure 20): 2D position ),( yx  and 

heading or rotation, rθ , relative to the co-ordinate system associated to the line set: either 

the map co-ordinates or the laser device co-ordinates. Assigning the heading, rθ , to axis 1 

or 2 and to axis X or Y in the co-ordinate system is only a matter of convention, as long it 
is the same for all frames. The global variables relate the frame to its inertial co-ordinates 
system. 
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Figure 20 – Frame global variables 
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Just like any other measured data, the laser scan data is affected by noise. An 
adequate model of the measurement noise propagated along the line extraction procedure 
seemed too complex. The range error on the measured data depends, by decreasing 
importance, on the nature and colour of the surface, the angle of incidence to the surface, 
the distance to the surface among other minor noise sources. The first condition is 
impossible to model beforehand. The second is very important if the incident laser beam is 
close to parallel with the surface and moderately important otherwise and the third 
depends on the laser device parameters.  

Therefore, a heuristic criterion was developed to establish a scale of confidence on 
the laser scan frames, which is an attempt to encompass all these error factors. From the 
line extraction procedure, described in detail in Appendix C, results that the smaller line 
segments are poorly extracted because they are usually based on a very small number of 
samples. This fact induced a confidence criterion based on the size of the axis: the longer 
the axis, the higher the confidence level. A second criterion considered the reflectance of 
the points in the line segment to reflect the importance of the nature and colour of the 
surface. The third element of the confidence criterion describes the range measurement 
error as a function of the range. This is to be adjusted by the operator based on the laser 
technical specifications. 

In a similar way, one could discuss about the influence of the noise embedded in the 
map representation, especially when it results from the 3D reconstruction algorithms, 
also based on laser data. However, since the map is the only available reference, it is 
regarded as the best possible representation of the environment. 

 
The association of scan frames with suitable map frames is the core of the algo-

rithm. However, since the algorithm is intrinsically exponential a lot of effort was put in 
designing constraints to cope with its nature. The line sets are sorted by decreasing size, 
the frames are also sorted by decreasing size of their longer axis and the computations are 
performed iteratively until a coherent pattern occurs in the possible posture list. 

To test whether one scan frame is a candidate match to a specific map frame 
requires only the local parameters. If the scan frame’s local parameters fit within the 
boundaries of the map frame’s local parameters (Figure 21) the two frames match. This is 
usually the case since the room profile perceived by the laser is a fraction of the total 
environment and many surfaces will be partially scanned, providing smaller lines than 
the original surface description.  
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Figure 21 – Frame match 
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Although it is conceivable that a smaller map frame may fit a larger scan frame, 
this will be seldom the case. On the other hand, this constraint reduces enormously the 
computation burden. 

To compute the possible posture the global variables are used. Assuming the two 
frame origins are the same point and the frame axes share a common orientation, the 
origin postures are used to translate the local co-ordinates (used in the scan frames) to 
the map co-ordinates. 

 Naturally, it will occur often that one given scan frame fits a few map frames, as 
illustrated in the previous section. Therefore, the procedure must be repeated with a 
sufficient number of frames until a coherent pattern occurs in the solution space. Each 
candidate solution has its own weight, associated to the confidence criterion designed for 
the scan frames. 

When the frame matching procedure is over, the result is a cloud of points ),,( ryx θ  

and their associated weights in the posture space. All these posture points are then 
grouped into a few clusters. Each cluster congregates all points lying within a predefined 
range. Although this clustering procedure is clearly a crude solution, it proved adequate 
to this problem where there is a large and unknown number of clusters, clearly isolated 
from their neighbours. The posture points within each cluster are then replaced by an 
equivalent posture computed from the weighed average of all posture points in the 
cluster.  

To enhance the clustering process, the isolated points (the "dust") are swept out of 
the posture set. After this, the ),,( ryx θ  space shows only the cluster equivalents. 

Usually, there is one solution with a confidence level much higher than all other 
solutions. This is the correct solution. The other points correspond to postures that meet 
some symmetry in the environment map.  

The Frame Localisation concludes by listing all the possible postures by decreasing 
weight. To verify the correction of the proposed solution, the Likelihood Test was 
developed and it will be discussed in the next Chapter. 

 

2.3 Formal Development 
 

2.3.1 Frame generation 
 
The basic data element for frame definition is the line. The line il  in equation (2.1) 

(Figure 22), is defined by its vertexes, iv1 and iv2 , referred to the appropriate co-ordinate 

frame. The map lines are referred to the environment inertial reference and the scan lines 
are referred to the sensor head axis where the laser is mounted, or equivalently, to the 
robot co-ordinate reference. 
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Figure 22 – Line definition 

 
For computational efficiency purposes, the line definition also contains the line size, 

id , and orientation, iγ , referred to the robot co-ordinates, for the scan lines and to the 

world co-ordinates for the map lines. The immediate access to the line size and 
orientation is an essential element to the efficiency of the algorithm, as it will be shown in 
the next sections. 

The data available to Frame Localisation are two line lists, sorted by decreasing 
size. The map list and the scan list are denoted by M and S, where M is the list of all the 
lines extracted from the map and S is the list of all the lines extracted from the laser 
range scan: 

 
List of Map lines,  M:  { }l M d l d li i i∈ > +: ( ) ( )1  

List of Scan lines,  S:  { }l S d l d lm m m∈ > +: ( ) ( )1  

 
A frame results from joining a pair of non-parallel lines from the same list. A pre-

defined threshold, NPθ , is used to decide whether the two lines are parallel1 or not. Each 

line is termed an axis of the frame. The generic frame ijf  results from lines il  and jl .  

The first parameter on the frame to be computed is the inner angle, innerθ , computed 

directly from the definition – equation (2.2). If the inner angle complies with the non-
parallel restriction - equation (2.3) - the computations associated to the axes size and the 
origin posture are performed, otherwise that pair is discarded and a new pair of candidate 
lines is considered. 

 

                                                 
1 The tuning of θ NP is not critical. In most cases the frame axis are nearly orthogonal and frame 
computations are very stable if the inner angle is above 0.05 rad (3º). 
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θ γ γinner i j= − , reduced to the interval [0, π[ (2.2) 

θ θinner NP≥  (2.3) 

 
The following step is the calculation of the intersecting point of il  and jl , or their 

extensions, which defines the frame’s origin (Figure 23). The lines are computed in the 
(slope, origin) parameter model. The line origin (do not confuse with the frame origin) is 
the point where the line crosses the independent variable axis. The parameters are 
defined as: 
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Figure 23 – Definition of frame parameters 
 
Using the parameters defined by equation (2.4), the two linear equations are 

simultaneously solved, and the ijx  and ijy  position of the frame origin is found. The frame 

heading, ijγ , is defined as the orientation of axis 1, 1γ . The choice of 1γ  as a heading 
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reference is arbitrary, provided the convention is the same for all frames. Equations (2.6) 
define the frame global parameters, relating the frame to its co-ordinate system. 
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(2.6) 

 
If one of the axes is nearly vertical, equation (2.4) is not valid. It would be possible to 

use an alternative parametric definition of a line ( r x y= ⋅ + ⋅cos( ) sin( )α α ) to avoid the 

singularity near the vertical. However, the former representation was kept because the 
slope is readily available from the axis orientation, ( slope = tan( )γ ), and the computations 

are much faster. In case the axis i, for instance, is nearly vertical, equations (2.4) and 
(2.6) are replaced by: 
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(2.7) substitutes  (2.4) 

 
(2.8) substitutes (2.6) 

 
while equations (2.4) and (2.5) hold. The overall result, including the vertical axis 
exception handling, although less straightforward, is very efficient. At the same time, the 
distances of the axis’s vertexes to the frame origin are computed (Figure 19),  
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(2.9) 

 
concluding the definition of the local parameters. In equations (2.4) to (2.9), the xy-co-
ordinates are defined in the line co-ordinate system, either the robot or the world 
reference. 

 
It should be noticed that the origin parameters of frame ijf , generated by il  for axis 
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1 and jl  for axis 2 is different from those of frame jif , generated by jl  for axis 1 and il  

for axis 2: their headings are symmetric. However, no confusion arise since only one of 
them is present in the frame set, as it will be shown below. 

In summary, a frame is defined by five local parameters: start and end of the two 
axis and the inner angle ),,,,( 2211 innerendstartendstart θ , which are independent of a 

external reference, and three global parameters relative to a fixed reference, which define 
the frame origin posture ),,( ijijij yx γ . The laser scan frames are based on the robot co-

ordinate system and the map frames are based on the world co-ordinate system. 
The computation of the two frame sets follows directly from the frame definition. As 

already discussed and for computational efficiency reasons, only the lines that are long 
enough are added to the frame sets. However, a long line may be “framed” with a small 
line, providing a reliable feature. Thus, two parameters exist for the minimum size: 

longlim  for the longer axis and smalllim  for the shorter one. The frame ijf  is a member of 

the frame set F, if the four conditions are simultaneously satisfied: 
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The two frame sets are then sorted according to the axis sizes to enhance the 

computational efficiency: for each frame, the two axis sizes are measured and the longest 
is used to sort the list. The two frame lists are derived from the two line lists (either the 
map list or the scan list), using a combination of any lines, il  and jl , abiding to the non-

parallel constraint defined by equation (2.3). The only difference between frame fij  and 

frame f ji  is the inner angle, innerθ . Thus, only the first is stored and the frame match 

procedure will test for both angles. Also, iif doesn’t exist since a line is parallel to itself. In 

conclusion, all frames in a list abide to the f i jij : <  constraint. The sorting criterion 

reduces the frame list to half of the possible combinations and optimises the frame 
matching procedure, as it will be shown in the next section. 

 
In many cases, the lines are grouped into two main directions, corresponding to 

square angles environments. In such environments, one of the directions is termed 
horizontal, while the other is vertical, H and V respectively, regardless of the robot’ 
alignment with any of these. Under these conventions, both frame lists may be presented 
as a table of a hypothetical frame set: 
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In equation (2.11), the first elements of the frame list are presented, assuming the 

following line order2: l l l l l l l lv v h v h h h v1 2 1 3 2 3 4 4, , , , , , , , ... , where ivl  is the i-th vertical line and jhl  

is the j-th horizontal line. The )(frame function embodies the frame generation 
procedure. The frame numbering no longer follows the previous indexing convention ( fij ). 

Instead, a new frame list order is defined by the decreasing size of the longer axis. This 
form emphasises the concern of how to cope with the intrinsic exponential character of the 
algorithm. Although the number of possible frames generated by small line lists is 
apparently huge, the design reduces the number of frames to a fraction of it. Moreover, 
the design is incremental: if a given number of frames are insufficient to compute an 
accurate solution, the frame sets may be extended without re-computing any of the 
existing frames. 

 

2.3.2 Frame matching 
 
Once the two frame lists - or equivalently frame table, using the form in equation 

(2.11) - are defined, the matching algorithm initiates. One frame table is fixed, the map 
frame table, for instance. Then, each element of the other frame table - in this case, the 
scan frame table - is compared to each candidate on the fixed table. 

The match test conditions are expressed in equation (2.12) and must be met 
simultaneously. Figure 21 - repeated on the left of Figure 24 - illustrates a successful 
frame match case. 
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Equation (2.12) uses the map table as the “fixed” element and the scan frame as the 

frame under test. The axis length tolerance is defined by mδ ; angδ  defines the angle 

tolerance. Each pair of frames is tested twice, because the assignment of axis 1 and axis 2 

                                                 
2 The lines are sorted by decreasing size, no matter their relative orientation. 
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in the frame creation process is arbitrary. The first case is depicted in Figure 24, left, 
where map axis 1 is associated with scan axis 1 and map axis 2 is associated with scan 
axis 2. The symmetric case, where map axis 1 is associated with scan axis 2 and map axis 
2 is associated with scan axis 1, is shown on the right. The former is termed cis-match 
and the latter is termed trans-match; these names are borrowed from chemistry. 
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Figure 24 – Frame match: “cis” and “trans” variants 

 
The definition of the matching parameters, mδ  and angδ  depends on the 

environment characteristics and will be addressed in Section 5. 
When two frames match, the co-ordinate transform relating the robot reference to 

the map reference follows directly from the origin parameters of both frames. The 
transform parameters are the displacement along the axis, x∆  and y∆ , and rotation, θ∆ , 

all expressed in the map frame. 
The rotation angle, θ∆ , results from the subtraction of one pair of corresponding 

axis: 
 

MapScan
11 γγθ −=∆  (2.13) cis-match 
MapScan
12 γγθ −=∆  (2.14) trans-match 

 
The 2D points expressed in the robot reference are transposed to the world reference 

following the canonical transform: 
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(2.15) 

 
The map frame origin is associated to the world reference while the scan points are 

associated with the laser device reference, which is related to the robot reference by the 
laser-to-robot transform. This transform may change during operation, as in the AEST 
Tower used to raise and lower the sensor head. It is useful to postpone the translation of 
data defined in the laser reference to the robot reference in order to minimise the 
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computational burden. Thus, the evaluated postures describe the location of the laser 
sensor origin. Only at the end of the Localisation algorithms, the unique resulting posture 
will be translated to the actual robot location. 

Choosing the origins of both frames as candidate points and solving with respect to 
x∆  and y∆ , yields: 
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(2.16) 

 
The three resulting figures represent both the transform parameters between 

references and the posture of the laser sensor with respect to the environment map: 
 

Scan
Map yxyx ),,(),,( θθ ⇔∆∆∆ .  (2.17) 

 
At this stage, a candidate posture is fully defined. 
 

2.4 Candidate posture clustering 
 
Iterating the matching procedures for all possible candidates generates a cloud of 

postures in the ),,( θyx  space. Each point in a cloud records one frame match and, as 

already discussed, it has an associated weight, which corresponds to a degree of 
confidence assigned to each particular result. The weighting criterion is based on the size 
of the axis. It uses the product of the axis size to minimise the influence of small lines and 
maximise the influence of large, balanced frames. 

Given a cloud of N posture points in the ),,( θyx  space, each corresponding to a 

candidate posture, the weight of the i-th point, iw , is defined in equation (2.18), where 

1size  and 2size  refer to the scan frame axes length. The weight is added to the posture 

generating a 4-parameter point, ip , defined in equation (2.19).  
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The clustering algorithm was kept very simple at the expense of some loss of 

generality. This implementation suits the type of clustering problem: i) a large and 
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unknown number of clusters, ii) the distance between neighbours in the same cluster is 
much smaller than the distance between neighbouring clusters. A sounder algorithm, 
from which the present one derives, was implemented but the results were very similar at 
the expense of a larger computational effort. This algorithm is presented in Appendix D. 

The cluster definition is similar to the point definition, equation (2.20). 
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  (2.20) 

 
The clustering algorithm is based on the following rules: 
 

1. The first point, 1p , is the seed of the first cluster 1c . 

2. The set of equations (2.21) defines the radius of the cluster. Hence, the angular 
distance between candidate ip  and cluster jc  must be closer than angledif  and the 

linear distance from ip  to jc  must be closer than centdif . The two parameters, angledif  

and centdif , are fixed beforehand. If the two conditions are satisfied ip  is added to the 

cluster jc  according to equation (2.22), a weighed sum that updates the cluster 

posture. The total cluster weight is updated according to equation (2.23). If ip  fails the 

(2.21) test for every cluster then ip initiates a new cluster.  

3. The algorithm repeats until the N points are tested. 
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The result of the clustering process is a set of C clusters in the form of equation 
(2.20). The cluster list is sorted by decreasing weights and the result is the possible 
posture list, which concludes the Frame Localisation Algorithm. 

 

2.4.1 Selection of best candidate posture 
 

The solutions included in the possible posture list were computed regarding only a 
small fraction of the environment. In fact, each individual candidate is based on one 
single frame, or equivalently, two surfaces only. Considering the posture candidates 
aggregated in clusters, the relative confidence is enhanced in the most “heavy” clusters 
since they embrace a wider fraction of the scene, containing multiple surfaces. 

Therefore, the final operations of the Frame Localisation deal with the possible 
posture list. The single elements, i.e., the candidate postures that were not corroborated 
by other surface matches, i.e., clusters with a single element are discarded, no matter 
their weight. The clusters representing the candidate solutions are sorted by decreasing 
weight. In order to make the result interpretation clear to the human operator, the cluster 
weights are normalised, adding up to a total weight of 1.0. 

At the end of Frame Localisation, the proposed postures were not yet tested in a 
thorough match between the whole scan and the available map. This is the task of the 
performance evaluation statistics, termed Likelihood Test, which is the object of the next 
chapter. 

 

2.5 Implementation Issues 
 
Along the chapter, several parameters were mentioned with little details. In 

addition, some technicalities were not mentioned to minimise the overhead in the 
explanation of the core of the algorithm. This section discusses these issues. 

 

2.5.1 Line representation and frame building 
 

The line representation aims at maximum efficiency and robustness at the cost of 
some redundancy and notational compactness. The (slope, origin) parameter model (2.24) 
was adopted since it involves no trigonometric computations, which are usually time-
consuming and copes with the singularity near the vertical with an if condition. 

For the sake of numerical stability and mathematical aesthetics, an enhanced 
variant for line intersection was implemented. If the slope is high, a small error sδ in the 

slope estimate multiplies the error into the co-ordinate estimates (2.25) (see also (2.6)).  
 

xslopeoriginy kk ⋅+=  (2.24) 
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xslopeyxslopeorigin skskk ⋅⋅+=⋅+⋅+ δδ )1(  (2.25) 

 
Instead of considering an exception near the vertical slope, the slope-space was split 

in two symmetric modes: in mode X the line is defined as )(xy  (2.26) and in mode Y it is 
defined by )(yx  (2.27). This approach minimises the slope error and simultaneously 

handles the singularity near the vertical: 
 
Mode X xslopeoriginxy X

k
X
k ⋅+=)(  (2.26) 

Mode Y yslopeoriginyx Y
k

Y
k ⋅+=)(  (2.27) 

 
The transformation of a given (slope, origin) pair to the other mode is trivial from 

the vertex definition given by (2.4) and (2.5). Notwithstanding, the line definition, 
including the vertex definition, is re-initialised, taking advantage of the iterative 
approach used for the line extraction (see Appendix C).  

The switch should occur near 1=slope  or 1−=slope . However, a small histeresis 

was introduced to reduce the number of computations (Figure 25). The mode changes 
occur at 5.0,2 ±=±= YX slopeslope  and 2,5.0 ±=±= YX slopeslope . 
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Figure 25 – Slope modes area 

 
In Figure 25 only the first quadrant is illustrated but the principle is applied 

likewise to the four quadrants. The original line intersection equations (2.6), which define 
the frame global parameters, must be extended to embrace the three possible forms. 
Equation (2.6) corresponds to both lines in mode X, equation (2.28) covers line il  in mode 

X and line jl  in mode Y, and equation (2.29) covers both lines in mode Y. 
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(2.29) 

 
Obviously, the local parameters are also adjusted as a result of the redefinition of 

the line parameters. 
The new definition reduces the influence of the line extraction process into the 

frame definition, especially when the two lines in the frame are far apart. It should be 
noticed that the inner angle constraint (2.3) protects the frame definition equations - (2.6), 
(2.28) and (2.29) - from singularity.  If the two slopes are very close, equation (2.3) will 
fail. In equation (2.28) singularities occur when one slope is close to the inverse of the 
other. However, since they are defined in opposite modes this corresponds to almost 
parallel lines.  
 

2.5.2 The influence of the Laser errors 
 
The most important source of measurement errors is the target surface. Depending 

on the colour and the texture of the surface the laser can receive an accurate measure, a 
wrong measure or no measure at all. The remaining error sources are, by decreasing 
importance, the incidence angle of the laser beam on the surface, the range measurement 
as a function of the range and other minor sources, such as the mechanical errors of the 
sensor. 

Thus, it seemed inadequate to create a covariance matrix associated to each of the 
variables as in [ArrasK]. Instead, intensive experiments were carried out to have some 
insight about the data statistics, as if the sensor was a black box. The experiments 
confirmed the dominance of the colour and nature of the target surface over the 
remaining error factors. The results provide little information about the statistics, 
compared to the type of information conveyed in the formal covariance definition. 
Notwithstanding, some conclusions may be extracted: 

 
• The reflectance data is of paramount importance to validate the range data. 
• The reflectance depends on the colour and on the texture of the surface, and the 

two factors have comparable importance. 
• The average range error increases as the reflectance decreases. However, the 

range measures degrade for high reflectivity surfaces too. This is a characteristic 
of each laser device. 
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• The repeatability of the range measurements degrades in face of poor reflectance 
surfaces. This effect can be detected by oversampling. 

• The range samples in presence of glass and mirrored surfaces induce large 
variations in the range and reflectance values among adjacent samples. 

• The integration time3 of the laser is of little importance above a given threshold 
specified by the laser manufacturer. 

 
Given these conclusions, a confidence measure was associated to each sample, based 

on its reflectance. The relation between the laser range error for each sample and the 
associated reflectance is again a matter of heuristics. In general terms, below a given 
threshold the range measurements are unreliable. As the reflectance increases, the 
confidence level also increases until a second threshold is attained. Above that, increased 
reflectance means decreasing confidence. This is usually the case with very reflective 
surfaces such as metal file cabinets and polished aluminium, used often in office 
environments. In case the reflectance is close to the maximum value, the confidence level 
is fixed because the reflectance data changes from sample to sample within the specified 
interval preventing any detailed analysis of the variations. 

The coding of the reflectance is specific to each laser device. For the lasers used in 
the RESOLV project, it is an integer variable with 64 or 128 steps between no reflectance 
data and maximum reflectance. There is also a flag to indicate read failure. In Figure 26, 
it is presented a possible confidence curve according to the heuristic criterion explained. 

 

negligible
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decreasing
confidence

optimal
confidence
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Figure 26 -  Confidence value depending on the reflectance 
 
The detection of glass and mirrored surfaces is a complex issue, involved in more 

heuristics. According to the experiments, a high quality mirror close to the laser device is 
very hard to detect. It behaves like a “window” to a virtual scene, a conical and expanded 
copy of the surrounding scene. When the mirror is at a greater distance, it may occur that 
the total distance exceeds the laser operation range and the results exhibit a low 

                                                 
3 The integration time is the time the laser fires short light impulses at the target. The longer it is 
the higher the energy sent to the target and the data oversampling. 
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confidence or they are invalid. 
The odd surfaces, especially partial mirrored windows, are detected with a criterion 

based on simultaneous analysis of range and reflectance variation. This criterion is used 
for all surfaces, but the parameters aim particularly at the detection of windows, a very 
common problem with reconstruction of in-door scenes. Other common problems are the 
objects to small too be perceived by the sampling grid, such as in-door plants, pens and 
pencils on top of tables, etc..  

Table 1 introduces this criterion with some sample surfaces. The confidence level 
decreases as the shading increases. To minimise the misjudgements the rule thresholds 
are not sharp. Instead, they define a fuzzy rule to change the confidence associated to 
each set of samples, and very few range samples are eliminated prior to the line 
extraction algorithms. 

 

 Low range variation High range variation 

Low reflectance variation 
between adjacent samples 

Regular surface Unknown 
 

High reflectance variation 
between adjacent samples 

An object on the wall (e.g. 
a picture or a poster) 

A window, a curtain 
or a window blind 

Table 1 – Rules to assign confidence depending on data variations 
 
A second issue can be associated to measure the influence of the incidence angle. It 

is known that the laser footprint (the area in the target surface illuminated by the laser 
beam) varies with the incidence angle (Figure 27, n.b. the beam angle γ  is much 

exaggerated). In a normal reflection ( 01 =β ) the maximum of energy is returned. As the 

incidence angle moves away of the normal ( 12 ββ > ) the fraction of the energy returned to 
the laser sensor is proportional to )cos(β , but depends on the surface texture too.  
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Figure 27 – Variable laser beam incidence angle  
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It would be possible to reprocess the reflectance data after the line extraction taking 
into account the corrected reflectance. However, this correction is negligible compared to 
the previous error causes and the computation burden would be significant. It should be 
noticed that for incidences from 0 to 4/π  (30º) the correction would be of 13%. If the an-
gle is high ( 4/πβ > , (45º)), the reflectance is reduced further and the confidence analysis 

would be handled by Table 1, thus the ill data statistics should be detected as well. 
The sizeable laser footprint generates another type error when the footprint hits a 

surface transition (Figure 28). If the beam hits partially a surface in the foreground and a 
second surface in the background the measurement read will be a combination of the two 
ranges. These occurrences are solved correctly if the range difference is high enough to be 
detected under the Table 1 criterions. The two surfaces are detected, albeit their length is 
a slightly smaller and the mixed point is eliminated. 

For a detailed analysis of the laser range errors see [SequeiraV_1]. 
 

γ

laser

target surface

 
Figure 28 – A mixed footprint example 

 
Using a heuristic approach to cope with the laser errors induces a large set of 

parameters to be optimised under each specific environment. This is a delicate task in 
particular if one considers that the operator of the RESOLV system will have very little 
insight about the technicalities of each individual module. Nevertheless, the default 
parameters suit most environments used in the essays and the algorithms discard only a 
reduced number of laser samples. 

The laser samples are grouped according to the above criterions; each group of laser 
samples is passed to the line extraction, except for the groups that have too few points to 
generate a suitable line. This is, again, a user defined parameter, usually 3 or 4 points. 
 The final confidence value associated to each line is based in a curve similar to 
Figure 26, modulated by the data variance criterion depicted in Table 1.  

 
The line extraction procedure takes all groups of points and extracts the elementary 

line segments. Then it tries to associate the neighbouring line segments to create longer 
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lines. In this process the individual confidence associated to each point group is merged 
into a single value, applied to each line. For more details, see Appendix C. 
 

2.5.3 Representation of sets: line lists and frame lists 
 
It was explained before (Section 2) that the Frame Localisation algorithm is 

intrinsically exponential. This fact is often sufficient to discard an algorithm along with 
any related solution. Despite this handicap, the algorithm was considered and developed 
in a manner to handle its exponential growth. This concern is embedded in each step of 
the algorithm. The only operation performed extensively on the data is the line generation 
both from the map data and the laser data (see Appendices B and C, respectively).  
 All subsequent operations are performed iteratively, in the sense that a small 
fraction of the data is processed at a time. The algorithm flows until the last phase and 
the results are assessed. If the results are adequate the algorithm terminates, otherwise 
the algorithm is resumed, adding a new fraction of the data. This feature is illustrated in 
Figure 29 where the data sets are emphasised over the operations. 

 
Sorting is an essential feature of the algorithm. All sets depicted in Figure 29 are 

sorted, hence they are termed lists.  
The first elements to be sorted are the line sets, which are transformed into line 

lists, sorted by decreasing size. This assumes that long lines encompass more information 
about the environment, they are better defined and they are less numerous than small 
ones. In addition, given the assumption that a large frame axis can not fit into a small 
frame axis (see Section 2), working by decreasing size helps the frame matching 
procedure. There are two lists: the scan line list and the map line list. The latter is 
usually shorter as it is suggested in Figure 29. 

Along with the geometric features, each scan line carries a weight with the 
confidence level granted to the group of laser samples in which the line is based.  

In the first iteration, the top elements of both lists (depicted in dark grey) are used 
to generate the first elements in the frame lists. The size thresholds are defined in (2.10). 
When applied to the scan line list, equation (2.10) must be modified to include the 
confidence level: 
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Figure 29 – Iterative data processing 

 
If )()()()( jjii lwldlwld ⋅<⋅ the two thresholds are exchanged; longlim  is associated to 

jl  and smalllim  is associated to il . The map frame list is sorted by decreasing size of the 

longer axis, while the scan frame list is sorted by decreasing weight of its “heavier” axis. 
The triangular form of the frame lists in Figure 29 assumes the lists abide to the usual 
shape of rooms with two perpendicular axes - see Section 3.1, in particular (2.11). 
Notwithstanding, the triangle is only a visual layout and the implementation is general. 

Once the two frame lists are computed and sorted, the frame comparison (equation 
(2.12)) and match procedure is performed. When a match occurs, the resulting posture is 
added to the possible posture list. The candidate posture weight iw is the product of the 

weights of the scan frame axes. 
 

)()()()( jjiii lwldlwldw ⋅⋅⋅=  (2.31) 
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The frame comparison is repeated with the remaining elements in the scan frame 
list. At this stage, there are two possible ways: apply the clustering algorithm to each new 
candidate posture and monitor immediately the results or process a batch of frames 
before clustering. Given the reduced number of frames processed per iteration, the latter 
was found more efficient. 

 
The circle in the bottom of Figure 29 represents the ),,( θyx  solution space. The 

dark arrow with a wider tail and a narrower head represents the candidate posture cloud 
as the clustering algorithm progresses. It is a sort and classification procedure by nature. 
When the clustering procedure is complete, the candidate clusters are already sorted by 
decreasing weight. The weight distribution is analysed to assess if the algorithm should 
terminate or resume. If the weight of the first solution is much higher than all others and 
gathers most of the weight, the algorithm is concluded. Otherwise the algorithm is 
resumed and the data sets must be extended. 

 
In a second iteration, depicted in Figure 29 by medium grey, two sets of lines are 

selected, one from the scan line list, the other from the map line list. These lines follow 
immediately the ones considered in the first iteration. It suffices to relax the longlim  and 

smalllim  parameters (usually divide them by a fixed value, e.g. 2) to include a new new 

fraction of the line lists into the frame building process. The newly added lines will 
combine with the existing ones and will combine with each other too. Hence, the frame 
lists are extended both to the right (combining new lines with existing ones) and to the 
bottom (creating frames from new lines). This operation is performed without any changes 
to the instances computed in the first iteration. 

The frame comparison and match algorithm involves the newly created frames: the 
new scan frames are compared to the previously existent map frames as well as the newly 
created map frames, generating new candidate postures. In addition, the scan frames 
computed in the first iteration are compared to the new map frames. 

Upon completion of the frame comparison and matching, the clustering procedure is 
run. At this stage, the possible posture list includes the first iteration clusters and the 
newly candidate postures, with its associated weights. 

The possible posture list is represented in Figure 29 in a circular manner. The 
candidate postures computed in each iteration are appended to the clusters computed in 
the previous iteration. The cloud of points is clustered and the result is a new cloud, 
usually smaller than the initial cloud but larger than the previous iteration’ results. This 
is depicted by the circular arrows, which are narrower in the head than in the tail and 
they are larger than their predecessors were. 

After the second iteration, the remaining clusters are again tested and a third 
iteration (depicted in light grey) is run. The process may be repeated until there are no 
more scan lines and map lines left. 
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In many trials, a single iteration of the algorithm is sufficient and two iterations 
cover most cases. The strategy used to constrain the calculations, associated to the 
relatively small number of instances turns the Frame Localisation algorithm into an 
efficient solution for the localisation problem, albeit its exponential nature. 
 

2.5.4 Frame matching parameters 
 
The frame matching parameters mδ  and angδ  used in equation (2.12), repeated 

below, may be tuned by the operator. 
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(2.12) 

 
The mδ parameter regulates the tolerance of axes match. In principle, the scan 

frame axes must be contained within the limits of the map frame axes. However, due to 
the errors tied to the line definition a small tolerance is given. This tolerance should be in 
the order of magnitude of distance between two consecutive points, admitting the final 
point of the line segment was lost. 

For instance, if a laser circular profile encompasses 2000 points and it has an 
effective range of 10 meter, the maximum distance between consecutive points is 0.03m. 
Thus, mm 05.0≈δ . If the tolerance is too narrow, some correct matches will not be 

detected. Conversely, if the tolerance is too wide, additional false matches will occur, 
adding wrong candidates to the possible posture list. Admitting these false hits are 
incoherent with the remaining results, they will be easily removed during the clustering.  

The angδ  parameter regulates the tolerance in the inner angle match. Given the sta-

tistic characteristics of the laser data and the method used for line extraction (see Section 
5.1), the lines based on the laser samples have little error in the slope definition. There-
fore, a small tolerance is sufficient to accommodate most cases. During the trials, a value 
of radang 04.0≈δ  (2.3º) proved to be adequate. Just like in the previous case, insufficient 

tolerance will eliminate true matches while extra tolerance will add false matches. 
In conclusion, when in doubt, the two parameters should be too large, rather than 

too small. 
 

2.5.5 Clustering parameters 
 
The two parameters that regulate the clustering procedure are angledif  and centdif . 

The clustering inclusion conditions, (2.21), separate the linear distance from the angular 
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distance. Thus, equations (2.21) verify if the candidate posture [ ]Tiiiii wyxp θ=  is 

within a cylindrical neighbourhood of cluster, [ ]Tcl
j

cl
j

cl
j

cl
jj wyxc θ= . This simple 

solution hedges the problem of creating a common metrics with linear and angular 
distance, which is addressed in Appendix D. 

The centdif  parameter defines the maximum cluster radius and parameter angledif  

defines half the “height” of the cylinder (see Figure 30). Given the posture distribution 
generated by Frame Localisation, the cloud of points is split into many sub-clouds where 
the distance between one point and the nearest cluster is usually much smaller than the 
distance between clusters. Since the Frame Localisation provides a typical accuracy of 
0.05m and 0.02rad (1º), the two parameters may be tuned between these figures and their 
double. 
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Figure 30 – The possible posture cloud in the solution space 

 
In case a candidate posture lies outside these boundaries, then it should be 

considered a different match position. However, should the Frame Localisation 
performance degrade under any particular conditions, the angledif  and centdif  parameters 

should be updated accordingly. 
 

2.6 Experimental Results 
 

This section illustrates the sequence of steps of the Frame Localisation algorithm by 
means of a real trial conducted in an office-like environment. The room is approximately 8 
meters long by 6 meters wide (see Figure 31). It has two walls covered with windows (left 
and bottom edges in Figure 31a) and the other two walls are white painted. This room 
and the results obtained there will be presented thoroughly in Chapter 3, Section 4. 

The room model (Figure 31a) was computed offline, based on architectural plans of 
the floor. In addition to the walls and window frames, the room model includes three file 
cabinets (visible in Figure 31b, showing the north wall). The windows are made of two 



2.6. EXPERIMENTAL RESULTS 55 
 

plates of glass with a white buffer in between (visible in Figure 31c, depicting a fraction of 
the east wall). The reflectance coefficient is high, thus they act as partial mirrors. 
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Figure 31 – Map of a sample office room and two views: north wall and east wall 
 
These trials were performed with the AEST platform, equipped with the Acuity 

laser with rotating mirror (see Chapter 1, Section 3). 
Two laser range profiles are presented in Figure 32. Each profile has approximately 

2400 points distributed by π2 rad (360º). However, there is a blind angle behind the 

sensor, corresponding to the volume of the robot, which is approximately 1.4 rad (80º) on 
the AEST. The sensor device is presented at the centre of the image. The two experiments 
were conducted with a few weeks interval, hence there are some differences in the line 
profiles.  

The acquisition system is depicted in the centre of the image, with a longer axis 
pointing to the right, representing the front direction. The arc in front of the system at 1-
meter distance represents the errors in the laser scan when aiming at the AEST (by 
convention, invalid measurements are assigned a –1.0 value). There are errors in other 
directions but they are occasional. 

The orientation of the acquisition system relative to the windows is detected by the 
irregular pattern of range samples, opposite to the regular sequence of samples pointing 
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at the opaque walls. 
 

  
(a) (b) 

Figure 32 – Range samples taken at different postures 
 
In Figure 33 the line sets computed from the laser profiles are presented. This is the 

result of the line extraction algorithm described in Appendix C, including the reflectance 
data analysis described in Section 5. It should be noticed that most of the range samples 
pointing at the windows were discarded. The few lines remaining correspond to opaque 
obstacles present in the room, albeit not in the model. The laser scan is reduced to 63 
lines in trial (a) and 88 lines in trial (b).  

 

  
(a) (b) 
Figure 33 – Lines extracted from the laser scan 

 
The room map includes 76 line segments, although most of them are too short to be 

used for localisation purposes. Since the map is based on am architectural plan, every 
detail in the window frame is depicted and passed to it, hence the high number of short 
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lines. The effective number of lines for localisation is close to 30. 
Based upon the line lists, the algorithm builds the frame lists. The scan frame list in 

trial (a) includes 30 frames and 63 frames in trial (b). The main difference between the 
two trials is the lack of long lines in trial (b), leading to a higher number of scan frames. 
The map frame list has 17 elements in both cases. 

The frame comparison and matching procedure generates the possible posture lists, 
illustrated in Figure 34.  

Each candidate posture in Figure 34 is represented by a cross (the location of the 
scanning device and by a line segment representing the orientation. In trial (a) there are 
42 candidate postures, whilst in trial (b) the number raises to 90. Many of these locations 
lie outside the depicted area. Since they result from matching with individual elements in 
the scene, there are no boundaries or contours to constrain the results. 

From the analysis of Figure 34 some immediate conclusions may be drawn: 
 
• The square alignment of the surfaces organises the lines into two main 

directions and the candidate postures follow two orthogonal orientations too. 
• The distance between clusters is much greater than the distance between the 

elements of each cluster. 
• The environment symmetry, namely the periodic window distribution, induces 

symmetric candidates in the solution space. 
 

  
(a) (b) 

Figure 34 – Possible posture lists  
 
Comparing the two trials, it is apparent that the reduced number of long lines, 

which generated a larger number of frames is also at the origin of numerous frame 
matches and resulting posture candidates. It should be noticed that the candidate 
solutions are drawn without taking into to account their relative weight. 

After the clustering procedure, illustrated in Figure 35, the neighbouring solutions 
are grouped and the isolated solutions are discarded. In trial (a) there are nine clusters in 
the figure and in trial (b) twenty-seven clusters are remaining. In Table 2, the proposed 
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posture estimates are presented with their relative weight. Only the clusters with a 
relative weight greater than 0.04 are represented, the others are grouped.  

The preferred solution is the one with the highest weight ( 0p ). Nevertheless, the 

candidate solutions with weight greater than the threshold (0.04) are saved in the 
possible posture list for further analysis.  

 

 Trial (a) Trial (b) 

 x 
[m] 

y 
[m] 

θ  

[rad] 

w x 
[m] 

y 
[m] 

θ  

[rad] 

w 

0p  4.137 2.481 -0.019 0.3936 3.593 3.000 1.541 0.2265 

1p  4.156 2.909 -0.010 0.1405 3.575 3.425 1.537 0.1182 

2p  3.718 1.154 1.551 0.1206 3.331 3.002 1.543 0.0807 

3p  2.921 1.154 1.551 0.0978 4.771 7.257 -1.507 0.0705 

4p  2.453 1.154 1.550 0.0931 3.352 10.153 -0.032 0.0439 

5p  4.192 7.821 3.136 0.0779 

6p  10.827 2.010 1.570 0.0479 

 plus 2 clusters with 
a total weight of 0.0268 

 
plus 22 clusters with 

a total weight of 0.4602 

Table 2 – Results of  Frame Localisation 
 
A simple comparison of weights within the same trial suggests the preferred 

estimate be too close to the other estimates. In particular, in trial (b) the total weight of 
the neglected clusters is more than twice the weight of the preferred solution. 

 

  
(a) (b) 

Figure 35 – The possible posture list after clustering with the range data referred to the 
most likely solution 

 
 



2.6. EXPERIMENTAL RESULTS 59 
 

The clusters listed in Table 2 are marked in Figure 35 (the clusters 5p  and 6p  in 

Trial (a) and  the clusters 3p  and 4p  in  Trial (b) lie out of the map). The laser range data 

is represented too, as if the acquisition system was at the posture defined by the preferred 
solution in the possible posture list ( 0p ). In spite of the dubious conclusions taken from 

Table 2, it is clear that the preferred solution corresponds to a correct posture estimate, 
although the complete error analysis will be postponed to Chapter 3.  

 
The Likelihood Test, described in Chapter 3, will measure the point-to-point 

distance between the laser scan and the map to assert the quality of each posture 
candidate. Depending on these results the Frame Localisation algorithm is concluded or 
resumed, extending the data sets with a new batch of lines. When applied to these two 
trials, the likelihood test passed and the Frame Localisation was concluded. 

A close exam of Figure 35 suggests some leads to explain these results. Because the 
room has two windowed walls, the algorithm is supported on the two other walls only. 
The map used ignores all features in the environment, except for the file cabinets on top. 
Hence, all the objects standing close to the right wall in trial (b), which are visible in 
Figure 31b, are not included in the model. In addition, the file cabinets are made of high 
reflectance metal and the rapid variations in the reflectance data disturb the line 
extraction procedures: where one would expect a long line, several non-parallel short lines 
appear. Finally, the blinds (curtains) on the left windows were lowered in trial (b) and the 
presence of a note board at the left of the file cabinets generated three long lines, which 
are not included in the model. The combination of these effects generates a high number 
of false candidates, which might mislead the algorithm reasoning. 

 
 
 
Notwithstanding the difficulties encountered in the presented experiment, the 

Frame Localisation algorithm provided a sound solution to the posture estimate problem 
in one single iteration.  

These difficulties are an unfortunate, although expectable, constraint when 
performing environment reconstruction tasks. The real scene to be reconstructed is often 
more complicated than the models used for development and the assumptions made 
beforehand must be revised on site. The cost to handle all the environment variability is 
the high number of parameters that might require tuning on site. 
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