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Abstract

The navigation of mobile robots in outdoor environ-
ments is becoming increasingly important fostered
by a large number of challenging applications. Lo-
calization, map building and world representation
are key issues for the navigation in unstructured en-
vironments. This paper presents a probabilistic ap-
proach for the localization of mobile robots aim-
ing at outdoor applications. A Markov model and
a topological map for world representation are the
frameworks that support the proposed algorithm.
Simulation results illustrate the performance of the
localization procedure.

1 Introduction

Mobile robots navigation, in particular in outdoor
environments, mimics, in a way, the human behav-
ior when subsisting in such environments. Environ-
ment perception is the main procedure that links the
actor (human or robot) with the surrounding world.
In addition, human beings create a particular world
representation and integrate their own observations
with the already acquired/learnt map to ensure lo-
cal positioning at a given time instant this permitting
path planning, i.e., the decision on how to reach a de-
sired location. Environment perception enables map
building or map enhancement. The map, which is
a world representation, collects the key features ex-
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tracted from the information acquired by the sensors.

This paper presents a methodology for mobile robot
localization in outdoor environments using a topo-
logical map that collects the main features of partic-
ular places in the world. A probabilistic approach
based on Markov Models is the framework that sup-
ports the robot’s localization and accounts for obser-
vation uncertainty.

The use of topological maps permits the exploration
of unknown and unstructured environments in the
absence of metric information, mainly in outdoor
environments. In this type of map, world is rep-
resented by graphs (not necessarily 2D) composed
by a fixed number of discrete places linked by bi-
directional paths and/or actions. This world repre-
sentation combines the optimal tracking capabilities
of feature maps — featured base mapping — with the
scalability of a topological map. The map used in
the present work is structured as a topological graph
of nodes and edges.

A similar world representation is described in [2],
where the author proposes a topological featured
map. The main goal is to facilitate the implemen-
tation of large-scale Simultaneous Localization and
Map building (SLAM). The map is also a topological
graph of nodes and edges. Each node, which defines
a unique physical location, is represented by a set
of nearby features. The edge connecting two nodes
specifies the coordinate transformation between the
poses of the corresponding nodes.

The advantages of topological maps representation
for robot localization are scalability, incrementally



built/update, no map matching and simultaneously
reducing the uncertainty of localization and percep-
tion of the environment. The methodology pre-
sented in this paper for localization does not re-
quire the exact position (geometric position) of the
robot which enables the use of the topological map
as a world representation. The map resolution is
proportional to the complexity of the environment
representation. Compactness is a key advantage
of this type of representation that allows fast plan-
ning and facilitates interfacing to symbolic planners
and problem-solvers. The disadvantages include, for
some applications, the absence of metric informa-
tion and the requirement of feature (or landmark) se-
lection/detection/recognition. This also means that
topological representations are heavily dependent on
a powerful system to identify elements of the envi-
ronment. As a result, one of the most known local-
ization problems using a topological representation
occurs when the robot traverses two places that look
alike. The topological approaches often have diffi-
culty determining if theses places are the same or
not (particularly if these places have been reached
via different motion commands, actions or paths), as
mentioned in [9].

The localization problem solved with a probabilis-
tic approach is robust in face of sensor limitations,
sensor noise and environment dynamics as referred
in [8], where the author identifies the global local-
ization problem as particularly challenging. Using a
probabilistic approach, the localization turns into an
estimation problem with the evaluation and propaga-
tion of a probability density function, see [5]. Within
the context of mobile robot localization, this type of
approaches are often referred to as Markov Local-
ization (ML) or Hidden Markov Models (HMM) as
shown in [7] and [8], respectively.

The novelty of this paper is the localization of mo-
bile robots in outdoor environments, using a proba-
bilistic approach supported on Markov Models and
designed on top of a topological map that collects
environment features. The main tool used to accom-
plish the localization on this world representation is
a modified version of the Forward-Backward algo-
rithm, [6].

The paper is organized as follows. Section 2 presents

an overview of topological world representations
and introduces the notation of the map’s parameters
that will be used to support localization. The local-
ization problem of mobile robots in outdoor envi-
ronments, using topological world representations,
is discussed in Section 3. Subsection 3.1 details the
Markov Model as a probabilistic approach, where
the Forward-Backward (FB) algorithm is mentioned
and revisited in Subsections 3.2 and 3.3, respec-
tively. Experimental simulated results are presented
in Section 4. Section 5 concludes the paper and
presents directions for further developments.

2 Topological Maps

A map is a representation of (part of) the environ-
ment’s surface (even tri-dimensional shape) showing
physical (natural or artificial) features that charac-
terize particular locations or places. In a topolog-
ical map no metric representation is available. In-
stead, the map expresses a functional relationship
among relevant features with a resolution that is pro-
portional to the complexity of the environment rep-
resentation. The main structure of a topological map
is composed by a set of nodes that, in this work, rep-
resent places in an outdoor environment, and edges
that link the nodes and account for the physical or
logical relationship between the nodes. In the case
where the topological map supports the navigation
of a mobile robot, edges may represent the actions
taken by the robot to travel between the nodes.

In the present work, a topological map supports the
navigation of a mobile robot, in particular its local-
ization. In this context, the state of the robot is re-
lated with the environment places in its neighbor-
hood which justify the introduction of the notion of
map state. Each node is defined as a state of the
map. Each state is characterized by a set of rele-
vant features to support the state identification and
to avoid mismatching. Similar features are grouped
in the same attribute set.

The notation used to define a topological map is the
following:

e s, is the state 7 of the map,

e S ={s1,8,...,5y} is aset of N states of the



map,

e v; is the 5 feature or attribute, j = 1,..., M,
that may classify any state s;,

e v; € Vj,ie.,the jth attribute takes values in the
set Vj,

e s,(v;) is the value of the attribute v; at state s;,

e 5;(v;) = () means that the attribute v; is un-
known at state s;.

In a traditional map of a city, the topological rep-
resentation is often used as a support for path plan-
ning. The relevant interesting places, considered as
map states, are emphasized with the most important
features like buildings, monuments, shops, stations.
The states are linked by roads, streets and rails. This
symbolic representation requires well characterized
states and a good recognition to avoid mismatch-
ing places that look alike. An example of a topo-
logical representation of the map of a city is rep-
resented in Figure 1 where seven different states
(S = {s1,89,...,87}) are displayed. Three fea-
tures (v, v9,vs) are used: transport, building and
leisure. The values taken by each feature are, for
example, V; = {airport, underground, boat, train,
parking}, V5, = {university, castle, church, statue}
and V3 = {camping, garden, restaurant}.

The main goal of localization, in the context of robot
navigation, is related with identifying the state of the
map in the closest vicinity of the mobile robot, which
is a concept that will be formalized in Section 3. To
perform localization the robot perceives the environ-
ment with its on-board sensors and the acquired data
is processed aiming at extracting the most relevant
features and localizing the robot by a matching with
the real features. This points to the key role played
by the sensing processing that collects observations,
for which the following related notation will be used:

[ o(v1) o(v2) oi(vy) | is a M-
dimensional observation vector at time instant
t,

.Ot =

e 0,(v;) is the value of the attribute v; extracted
from the observation oy,

Figure 1: An example of a topological map in a city

e 0,(v;) = () means that observation of the at-
tribute v; at time instant ¢ is not achieved,

e O, = {01,09,...,0;} is an observation se-
quence up to the time instant ¢.

As a result of the localization procedure, the current
state of the mobile robot is evaluated. The following
notation being used:

e ¢; is the robot location in time instant ¢,

e O = {q1,q,...,q:} is a state sequence up to

the time instant ¢,

e g, €85.

3 Localization

The localization procedure proposed in this work
states that, at each time instant, the robot location,
¢, 1s equal to the map’s state in its closest vicin-
ity using a probabilistic approach to decide on this
proximity function. The robot estimated location is
the map’s state that is most likely to have produced
the observations acquired by the robot sensors dur-
ing a given time interval. This is notably different
from the usual localization procedures that aims at
providing a pose (position and orientation) estima-
tion in a local or global frame. In fact, when the



proposed localization procedure yields a robot esti-
mated location ¢; = s; this does not mean that the
robot physical location (pose) coincides with that of
the environment place that lead to the map state s;.

As aresult of the measurements uncertainty, the cur-
rent robot state has to be estimated. The main is-
sue of the localization problem is to find the state
that minimizes the uncertainty, given the observa-
tions. The state estimation at each time instant ¢ is
evaluated using all the available observations during
the interval 7T, with ¢ < T which means that the
time instant ¢ is not necessarily the current time in-
stant. According to a probabilistic approach, the cur-
rent state estimation, ¢, is the argument that max-
imizes the conditional probability density function
(pdf) of the state given the observation sequence
Or = {01,09,...,04,...,07} acquired in the time
interval T, i.e.,

Qt:argnb?XP(qt:si | o1,...,07) (1
Mobile robot sensors acquire raw data whose nature
depends on the type of sensors. For example, vision
cameras provide intensity images, while laser range
sensors or ultrasound sensors provide range data. Ir-
respectively of the type of sensor, it is assumed that
raw data is processed and that the relevant features
are extracted. These features are those used as at-
tributes for the characterization of the states of the
topological map. In the context of the localization
methodology described in this paper, (1), observa-
tions are considered to be the state attributes ex-
tracted from sensor data along the mobile robot tra-
jectory.

To evaluate (1) it is necessary to compute the pdf
of the state given the observation sequence. The
following subsections introduce the Markov Mod-
els and the Forward-Backward algorithm that sup-
port the evaluation of (1).

3.1 Markov Models

The localization process requires the knowledge of
the information (01, 09,03, ...,07) to solve (1) at
time instant ¢, which is a rough problem. However,
the strong Markov assumption, valid in this context,
overcomes the problem.

Figure 2: Markov Model: states and observations
assumptions

The Markov property, [3], states that the knowledge
of the state at time instant ¢, ¢;, is enough to deter-
mine the pdf of the state in future instants, or, in dif-
ferent words, all the information acquired before the
time instant ¢ is already reflected in the state estimate
¢;—1. In addition, the observation o, depends only
on the state of the mobile robot at the time instant
t. This Markov property is graphically illustrated in
Figure 2, where the variable ¢; corresponds to the
mobile robot state estimation at each time instant.

A Markov Model (MM) is the framework that sup-
ports the study of the state evolution along time.
The MM is completely characterized by three pdf,
(2), (3) and (4). The first one is the state transition
probability density, a,;, that defines the probability
of changing from the state ¢ to the state j, as illus-
trated in Figure 3. The state transition probability in
the a;; parameter characterizes the edge of the topo-
logical map between states s; and s;. The value of
each transition may depend on the distance between
the states but can also be acquired during a training
phase which is updated along the navigation. The

Figure 3: Markov Model with 3 states s;, s; and s,
and selected state transition pdf

second pdf that characterizes the MM is the obser-
vation probability density function b;(o;), that repre-
sents the probability of observing o, at the time in-



stant ¢ given that the state is s;. Finally, the initial
state distribution, 7;, that represents the probability
that the robot initial state is s;, this being defined a
priori. The compact notation for the MM charac-
terization is represented by A = (A, B, ), where
A is a square matrix, containing all the probabil-
ity transitions, a;;,¢,j = 1,...,N, B is a vector
of the observation probability in all possible states,
bi(o;),i = 1,...,N and 7 is a vector that con-
tains the initial localization probability in all possi-
ble states, m;,¢ = 1,..., N.

a;j P(gi+1 =55 qt=5i),0,5 =1,...,N@2)
bi(oy) = Plog|q=s), i=1,...,N 3)
™ = P(qlzsi), iZl,...,N (4)

The observation pdf depends on the sensors’ model.
In this work we assume that the sensors are modeled
as a Gaussian, (5),

P(os | g = s:) = N(oy, pi, Ri) )
It is also assumed that each state is modeled as a sum
of Gaussians, > | ki N (o, mi, Py), where my is
the mean vector and P;; the covariance matrix of the
state attributes. This model validity increases with
the number of Gaussians, G.

Based on Markov Models, the localization proce-
dure in (1) is similar to the high-dimensional max-
imum likelihood estimation problem, as referred in
[6]. This problem is efficiently solved using the
Baum-Welch algorithm, as well as the Forward-
Backward (FB) algorithm or simply the Alpha-Beta
algorithm. The same problem is referred in [10] as a
special version of Expectation and Maximization.

3.2 Forward-Backward algorithm

The localization problem requires the evaluation of
the argument that maximizes the pdf in (1). To
accomplish this goal, the FB algorithm described
in this subsection, is applied along the lines de-
scribed in [6]. The conditional probability of the
current state given the observation sequence dur-
ing the time interval 7" is decomposed in two pdfs,
P(o1,...,04,q = s;) and P(0yy1,...,01 | ¢t = 8;),
as represented in (6),

P(q; =5 | Or) =
_ P(o1,.--s01,q1 = 8i) P01, - -, 01 | gt = 8i)
P(Or)
oy(8)Bi(9)
- P(Or) ©
where
O‘t(l) P(Oh ceey O, 4y = Si) (7)
Bi(i) = P(ow1,.-- 07 | @ = 55) @)

One of the probabilities in (6), the oy (i) parameter
(7), is related with all the observations from the past
up to the time instant £. On the other hand, all the
future observations are in the j3;(i) parameter, (8).
Applying the Bayes law in the denominator of (6)
and using (7) and (8), yields

a (i) - By(2)
YLy ai(i) - Bi(d)
= nr-oy(i) - Bi(i)

where 77 is a normalization factor.

P(Qt =5 | OT)

€))

The main result expressed in (9) is that there is a
complete decoupling on the observation sequence
relative to the time instant ¢. The observations prior
to ¢ (past observations) and the observations from ¢
to 71" (future observations) appear in different factors.
This decomposition is illustrated in Figure 4, where
the o and 3 parameters are represented during a time
interval 7.

Figure 4: The past, «, and the future, (3, influences
the time instant ¢

Whenever ¢ is the current time instant and ¢ < T, itis
reasonable to consider that there is no future obser-
vations up to 7', and therefore j3,(i) is considered to
have a uniform distribution, this expressing the ab-
sence of future information. On the contrary, when-
ever the current time instant is t; with ¢t < t; < T,
the state estimate at time instant ¢ can profit from the



observations from ¢ to ¢;. This leads to increasing the
quality of the «; parameter in future localizations.

To evaluate the pdf (9) for each time instant ¢, it is
necessary to evaluate oy (i) and [3;(¢). The FB al-
gorithm, [6], provides an iterative solution to this
problem. The forward and backward iterations of
the algorithm are represented in (10) and (11), re-
spectively,

1(7)

[
Z ai; -

where a;; and b; are the parameters that characterize
the underlying Markov Model. The reader should
notice that (10) evolves forward in time while (11)
evolves backwards. The forward and backward iter-
ations are initialized at time instant{ = Oand ¢t = T,
respectively. The initialization of (10) requires a pri-
ori information in the variable 7, as expressed in
(12). The initialization of the variable § corresponds
to an uniform distribution, as stated in (13),

az]] : 0t+1) (10)

Bii) = B (y) AD

0t+1

ar1(i) = Plg=s) Plor| =)
= T bi(Ol) (12)
5T(’L) =1, 1<:+<N (13)

3.3 Forward-Backward algorithm revisited

In the FB algorithm described in the previous sub-
section, the time interval of length 7" from ¢ = 0 to
t = T has a fixed length, while ¢ is the single vari-
able of time. For long time intervals, correspond-
ing to large operating periods, the FB algorithm im-
plementation becomes too time consuming. For this
reason, it is necessary to understand what has to be
changed in the algorithm if the length of the observa-
tion sequence, 7', is also considered to be a variable.

Rewriting the equations (7), (8) and the iterations,
(10) and (11) of the previous section as a function of
T', the results are expressed in (14), (15), (16) and
(17). The main difference is the parameter represen-
tation, which includes the variable T" in superscript.

(14)
(15)

P(Oh'"votvqtzsi)

P(Ot+1,---7OT|qt:8i)

N

oTAl) = [Za?
Z%

au] : (0t+1) (]6)

gy = ) B () A7)

0t+1

To evaluate o] (5) and 3] () as a function of T', con-
sider, as an example, two distinct values for 7', Tl
and 15, with Tl < T5. Asillustrated in Figure 5, a
is equal to oy 2, for t < T3, (18), since both consider
the same past information.

T.
B[2

Figure 5: The past and future influence at time in-
stant ¢. The future is divided in two sub-intervals

It is thus evident that,

afl*(j) = o)), (18)

while 82 is decomposed in two parameters: the first
contains the information of the interval from ¢ to
T, and the second results from the observations ac-
quired during the fixed interval from 77 to 75,

Ty /- Ty /- T /-

o) = Bt() - B (@)
Consider now that the overall observation sequence
interval is sampled in time intervals of length 7',

kKT + T, as illustrated in Figure 6. Using the in-
troduced notation, this yields:

t<T

19)

OkT+T {01, -5 Ok OKTH15 - - - 0kT+T}
= {Osz7 OkT+15 -+ 0kT+T} (20)
With the definition O]]:%UFT = {OkT+17 ey OkTJrT}

the observation sequence up to k7' + 1" is written
as

Orryr = {Or, Of7 "

The probability of the current state given the obser-
vation sequence, {oxr, OkTJ’T along the acquired
time interval from k7" to k71" + T is given by



«—T7—>

1 observations
| \\Jf_k

>
»

lo T 2T 3T ..t

Figure 6: Observation sequence divided in time in-
tervals of length T’

P(Qt =S | OkT+T) =

= P(Qtzsi|017---;0kT7---70k:T+T)

= P(Qt =S | OkT, OKT+1, OkT+25 - - - 5 0kT+T)
= P(q = si|owr, 057 ™")

_ afT+T( ) ﬁkT+T(Z) (2])

(OkT+T)

where « and (8 are expressed in (22) and (23), re-
spectively. Both equations require that k7" < ¢ <
KT +T.

G = Plogr, ..., 00, = 55) (22)
FIG) = P(ogay - okrer | @ = i) (23)

To evaluate the pdf (21) for each time instant ¢, it
is necessary to evaluate o’ *7'(4) and B (7). As
described in the previous subsection, it is also nec-
essary to apply the forward and backward iterations.
At each interval of length 7, the initializations of
both parameters are required. The initialization of
(22) and (23) are presented in (24) and (25), where
it is used the fact that the probability P(gxri1 = ;)
is the same as P(qyr = $;)-

kTJrT(,L)

Q7] P(qrr1 = 5i) - P(okrs1|qrr+1 = 54)

™ Zk T b; (OkT+1) (24)
(25)

Birir(@) = 1, <i<N
The forward and backward iterations in (26) and (27)
are similar to (10) and (11).

af () = [Za’“m az-j] +bj(0141)(26)
fT+T(i) = Zazg i (0441) fffrT(]) 27)

Further developments on the parameter /3 in (27) is
still possible. Replacing the parameters (k—1)T+T
and k7" + T in (19) for T} and T respectively, this
equation yields (28). Since the b, (o7 1) is the same
as P(oxryr | qrror = Sj) = 0;, the expression is
rewritten as shown in (29), where §; < 1,Vj. From
(2), ¥ aij = 1,and so 3 agj - 0 = 7 < 1. For
this reason, [ is maximized by a decreasing power
series where the constant time is 7 as stated in (30).
This is the clue to choose the appropriate time inter-
val T'.

T = p ) Bgzﬁ?mm
T () (E=UTHT Zam (k1) (28)
k—-1)T T N
BTGy < gD Za” 5 (29)
S ﬁék—l)T-I—T(z) o

The necessary tools to evaluate the localization prob-
ability were described. To implement this methodol-
ogy, it is first necessary to define a time interval 7'.
Second, along each time interval the o and [ pa-
rameters are calculated using the observations and
iterative equations. The localization probability for
each state, ¢; = s;, 1 =1,2,---, N is evaluated us-
ing the FB algorlthm. The state that maximizes the
probability is defined as the current state.

4 Simulation Results

This section presents experimental simulated results
on the localization procedure described in Section 3
with the revisited FB algorithm. In the experiments
the environment is represented by a topological map
with 6 states, si, So, ..., Sg, €ach one characterized
by a set of five different attributes, vy, vs,. .., vs.
Two different paths are considered in this map, as
represented in Figures 7 and 12. Even though each
state is, in general, characterized by a sum of Gaus-
sian pdfs, the present simulation considers, for sim-
plicity, that each state is defined by a single Gaussian
pdf. The corresponding mean is a 5-dimensional



vector collecting the attribute values and the covari-
ance matrix is diagonal to express a null correlation
among the attributes.

To implement the simulation and assess the localiza-
tion algorithm performance it is necessary to define
a referential system that provides the exact position
and orientation of the mobile robot along its path and
the exact position of each map’s state. It should be
reinforced, at this stage, that the proposed localiza-
tion algorithm does not require this metric informa-
tion, which is exclusively used to simulate the ob-
servations, to accomplish the path planning and to
evaluate the results. It is considered that the mo-
bile robot is equipped with a sensor whose statisti-
cal model is also a one dimensional Gaussian pdf.
Again for simulation purposes, it is considered that
the probability that the mobile robot observes the at-
tributes of a state is proportional to the inverse of the
distance to the state, this distance being evaluated in
the metric referential. In addition, it is assumed that
the robot’s sensor measures, in each time instant, all
the attributes of the closest state.

Without a navigation algorithm, which is not the
scope of this paper, the performance analysis of the
localization procedure requires the a priori defini-
tion of the path the mobile robot will follow. This
path is specified by the set of via points, F;, illus-
trated in Figures 7 and 12.
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Figure 7: Experiment 1 — Map states, via points, at-
tributes of each state and executed path

As a consequence of the low probability values of
localization (caused by the exponential decreasing
as referred in (30) in the previous section) the ex-
perimental results are displayed in logarithmic scale,
log P(-). At each instant time ¢, the current state es-
timate corresponds to the state with the highest prob-
ability value. The results displayed in Figures 8-11
and 13 represent the evolution of log P(q; = s; |
01,...,0r) fori = 1,2,...,6 along the simulation
iterations. The small circles in each function are
numbered according to the via points displayed in
Figures 7 and 12.
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state, with variance noise 0%

Experiment 1

The first experimental results obtained with a obser-
vation standard deviation o are shown in Figure 8.
The localization probability is higher when the mo-
bile robot is in the close vicinity of a state. However,
when the mobile robot is near to a state, the prob-
ability function displays some peak values. These
peaks are periodic and dependent on the length of
the observation time interval, 7', defined in Subsec-
tion 3.2. They occur at the beginning of each inter-
val T" as consequence of the initialization referred in
(24), without any connection with the previous a7
value. The smoothing of these peaks is achieved by
normalizing the parameter a7 (i) in (24) and re-
placing it by (31).

o (i)

— 31
sVatg OV

ayr i (i)



where a7 1] is equal to the normalization of o pa-

rameter of the last iteration on the previous interval.
Figure 9 displays the results obtained as in Figure 7
but after the referred normalization. It is clear that
the peaky evolution of the probability was decreased,
this resulting from the implemented normalization.
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Figure 10: Log of probability localization evolution.
Observation variance o3 = 40

To test the localization algorithm robustness, the
standard deviation of the sensor noise was increased.
The results in Figure 10 were obtained with the «
normalization and a observation standard deviation
09 = 207, where oy refers to the value used in

Figures 8 and 9. The results in Figure 11 consider
o3 = boy. It is clear the performance degradation
in localization estimate as the observation noise is
higher. In particular, in Figure 11, the localization
estimate is not stable when the mobile robot travels
between the states s; and ss.
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Figure 11: Log of probability localization evolution.
Observation variance o3 = 2507

Experiment 2

In Experiment 2 the path planning provides ambigu-
ities. In some segments of the trajectory the mobile
robot is equally distant from two or more states as il-
lustrated in Figure 12. For example, the uncertainty
situation among the states si, so and s3 is evident be-
tween the via points P; and P4, as illustrated in Fig-
ure 13 (between the iterations 100 and 200). Also
between P, and F; the uncertainty between s, and
s3 remains (iterations 200 to 300). After crossing the
via point P the mobile robot becomes equidistant
to the states s; and s, this creating, due to sensor
noise, an uncertainty situation evident in Figure 13
(iterations 800 to 950).

S Future Development

In this paper, a localization algorithm for a mobile
robot was presented aiming at outdoor operation.
The algorithm integrates a topological map and a
Markov Model in a localization approach. Using
the same map representation and a probabilistic ap-
proach, this work will proceed with the navigation
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Figure 12: Experiment 2 — Map states, via points and
executed path
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Figure 13: Experiment 2 - Probability localization
evolution. The variance noise is o2

issues, as well as experimental results in a real en-
vironment, using a mobile robot in an outdoor sce-
nario. The target application is a rescue mission in
an hostile environment.
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