
Behaviour-Based Cooperation Between Two Mobile Manipulators�

Jo~ao Sequeira and M. Isabel Ribeiro

Instituto Superior T�ecnico / Instituto de Sistemas e Rob�otica

IST - Torre Norte, Av. Rovisco Pais 1, P 1049-001 Lisboa, Portugal

fjseq,mirg@isr.ist.utl.pt

Abstract

This paper describes a framework to model a behaviour-based approach to cooperation be-

tween two mobile manipulators transporting a rigid bar. The two mobile manipulators cooperate

with each other in the sense that they are able to execute an assigned mission, managing to

hold the bar and avoiding any physical contact between them. In each mission, an ordered

sequence of workspace points must be reached by the bar. One grasping point is �xed at the

prede�ned extremity of the bar whereas the other is allowed to slide along the bar and both

manipulators are assumed to grasp the bar using a compliant connection. The additional degree

of freedom introduced by the sliding of one of the grasping points increases the solutions space

of the problem and, simultaneously, constrains the direction of search for these solutions.

The control methodology proposed in this paper for each single robot is supported in the

de�nition of equivalence classes in a state space of aggregates of feasible trajectories. Within a

natural language context, these aggregates are identi�able with robot's behaviours. It is shown

that two basis operations induce a non proper semiring structure in a subspace of the state

space.

Experimental results, using real and simulated mobile manipulators, illustrate the overall

performance.

1 Introduction

Cooperation among multiple robotic devices is a wide research area with increasing importance due

to scienti�c and economical aspects. Typical real cooperation problems include maintenance and/or

inspection tasks in hostile environments, material transportation tasks in dynamic environments

and construction tasks in unstructured environments. In general terms, each of the aforementioned

classes of problems has speci�c requirements in terms of locomotion and manipulation, often being

constrained by the environment where the robots have to operate.

This paper considers the problem of transporting a �xed length rigid bar by two mobile manipula-

tors (mobile platform plus manipulator) using a behaviour-based approach. The results presented

illustrate the system performance in two situations: when the interaction between the mobile ma-

nipulators is only due to the bar, and when collision avoidance between the mobile platforms must

also be considered.

�Work sponsored by the programme PRAXIS XXI, project COOPERA - 2/2.1/TPAR/2087/95.

Virtually, all classes of tasks assigned to a multiple robot system can be solved using a pure

control perspective. The nonlinear nature of the dynamic systems that model robots is well known.

Linearization, while simplifying the models, may be valid only in small regions of the state space,

increasing the complexity of the overall control problem (see [Sandell et al., 1978] for a survey

of decentralized control methods, mostly dedicated to linear systems). The environment may

also induce further di�culties. For example, the bar transportation problem can be seen as a

dynamic system by itself (as in [Khatib et al., 1997]) or as a task to be executed by a number of

interconnected dynamic systems (the mobile manipulators), as in this paper. Although leading to

successful experimental devices, the �rst approach tends to be not
exible to changes in the class of

tasks the system is able to perform, the main reason being the inclusion of task speci�c knowledge

in the controllers. The approach proposed in this paper presents a higher degree of
exibility than

the previous one. For example, identical control structures can be used in problems with di�erent

tasks and systems, such as the bar transportation problem by two mobile manipulators and the

pressing of a button or opening of a door by a single mobile manipulator.

The novelty of the paper lies in the de�nition of a framework that identi�es the basis building

blocks of a behaviour-based architecture for robot control and leads to a simple computational

implementation. The framework establishes equivalence classes in the set of aggregates of feasible

trajectories, treating multiple trajectories as single objects. The aforementioned
exibility degree

is illustrated through the application example presented, as the architecture proved adequate in the

decentralized control strategy used, with each local element having a high degree of reactiveness.

The paper is organized as follows. Section 2 presents a framework to de�ne a behaviour-based

architecture for the control of a single robot. The section starts with the de�nition of a state set

able to represent the control problem for single and multiple robots situations and proceeds with

the de�nition of relevant operations in the state set. Section 3 explicits the correspondence between

the framework and the implementation principles. Section 4 presents the decentralized model using

the behaviour-based architecture developed for the control of single robots. Section 5 presents the

bar transportation problem using two mobile manipulators and the control architecture de�ned in

the previous sections. Results using real and simulated robots are presented and discussed. Finally,

Section 6 presents the conclusions.

2 A behaviour-based framework for robot control

2.1 Basis concepts

The behaviour-based control paradigm considered in this paper follows the information pipeline

de�ned by Environment! Sensors! Behaviour generator! Actuators! Robot! Environment.

The domain and range sets1 for the mappings involved in this pipeline, that will be used for each

robot involved in the cooperation problem, are de�ned in Table 1.

The behaviour paradigm presented in this paper is based on the principle that a robot can be con-

trolled by switching, at spaced time instants, between a priori de�ned references. These references,

which are de�ned by an external user, are established using the a priori knowledge about the robot

and the environment where it operates. In some sense, these references act as open loop control

1The alternative word space is common in the robotics �eld. The argument of [Simmons, 1963], pp. 5, was adopted

in the paper.

S The sensing information, e.g., battery level, ultrasound data,

Q The robot's con�guration space, or C-space, (q 2 Q),

A The set of every possible action, (a 2 A),

Ap
� A The set of the user de�ned actions,

T = Q� A The state set.

Table 1: Relevant sets.

laws, aiming at simplifying the design of the control procedure. These control laws, denoted in this

paper as actions, represent a user oriented perspective that is common in behavioural approaches,

[Ko�seck�a et al., 1997]. This terminology comes from the fact that each mapping implementing a

control law is the action of the group R (the time axis) on Q (see [Hungerford, 1996], pp. 88, for

a rigorous de�nition of group actions). Actions are the entities in charge of generating the motion

directions in Q, so that T is formed by a set of con�gurations and a set of generators of motion

directions, thus being a state set.

The resolution of a problem under a behavioural approach requires that a user speci�es a number of

appropriate actions accounting for the available a priori knowledge. These actions, included in Ap,

are used to generate all the possible actions, A, that, combined with the sensory information, de�ne

the state of the agent. The state information is then processed, in
uencing the robot con�guration.

The
ow of these interactions is represented, using the sets in Table 1, in the following diagram.

S �! T

- #

Q

(1)

The word agent will be used to designate a single robot system behaving according to diagram (1).

In general, the interactions robot-environment require frequent changes of action and hence each

individual action tends to be in execution for short periods of time. Therefore, instead of having

a user de�ning a complete trajectory it is possible to rely simply on vector �elds de�ned in a

neighbourhood of each con�guration. This argument is extensively used in Section 5. The elements

of the state set, T , will be represented by a(q), with a(q)j
k
representing the con�guration obtained

from the trajectory generated by a(q) at time k. The time instants where the switching between

states occurs are named as events. The agent state set is detailed in the following de�nition.

De�nition 2.1 (The set T) Let I be a connected set and A = fai : i 2 Ig be the set of all

possible actions during the execution of a task. Let ai(q) = fai(q)jk; k � 0g represent the trajectory

generated in the d-dimensional manifold Q by the action ai. This trajectory veri�es

ai(q)j0 2 V (q)

8 q 2 Q; 8 ai 2 A; 9 Bai
(q) � Q : ai(q) � Bai

(q)

V (q) � Bai
(q);

with V (q) a neighbourhood of q, and Bai
(q) a path connected subset of Q, bounded by a d � 1-

dimensional submanifold of Q.

Each subset Bai
(q) is easily perceived as a volume, tube or region, holding the trajectories generated

by ai(q). The con�guration q represents the initial con�guration in the neighbourhood of which ai
is applied.

In practice, the sets Bai
(q) account for environmental, kinematics and user de�ned constraints in

Q. The environmental constraints include environment speci�c conditions such as the minimal

clearance between obstacles. The range of some of the parameter dependencies of the actions in

Ap can also be considered in this class, e.g., parameters that can be tuned in real-time, like the

curvature of a trajectory made by a mobile platform to avoid an obstacle or the velocity with

which a manipulator, mounted over that mobile platform, must react in order to compensate for

any perturbations introduced by the platform. Nonholonomic kinematic constraints are taken into

consideration by an appropriate speci�cation of the region spanned, in Q, when the robot moves

between two close con�gurations.

The notation introduced in De�nition 2.1 has the advantage of freeing the concept of action from

the di�erential equation representation. The state a(q0) can represent a solution of a di�erential

equation _q = f(q), for some vector �eld f(�) and with initial condition q0, but can also represent

the solution of a more complex process, e.g., an hybrid system able to generate bifurcations in the

trajectories.

A task is de�ned as an element of T and mission as an ordered sequence of tasks.

2.2 Basis building blocks of a behaviour-based architecture

De�nition 2.1 yields that di�erent trajectories in Q might be completely enclosed by the same

region Bai
(q). This motivates the following de�nition for the natural equivalence relation in T .

De�nition 2.2 (Equality relation in T) Let V1(q) � Bai
(qi) \ Baj

(qj) be a neighbourhood of

q verifying qi; qj 2 V1(q). Two states, ai(qi) and aj(qj) are said to be equal (the relation being

represented by ai(qi) = aj(qj)) if and only if the following conditions are veri�ed,

(i) ai(qi); aj(qj) � Bai
(qi)\Baj

(qj), that is, any sequence of con�gurations generated by ai(qi) and

aj(qj) lies in the same bounded region of the robot's con�guration space,

(ii) 8 kj � 0; 9 ki � 0 : ai(qi)jki 2 V2(aj(qj)jkj), that is, if, being both applied at time k = 0, in a

neighbourhood V1(q), ai reaches (in an unspeci�ed time ki) a neighbourhood, V2(aj(qj)jkj) for

an arbitrary time kj.

By De�nition 2.2 two states are equal if and only if they represent a similar trajectory in the C-

space. The trajectory similarity is measured in terms of the region, Bai
(q), spanned by the states

(condition (i)), and in terms of similarity in temporal evolution (condition (ii)). A weaker relation,

named \state substitution" (represented by) is de�ned in appendix.

Given an arbitrary state, ai(qi), the re
exiveness expression

ai(qi) = ai(qi);

with the equality de�ned in the sense of De�nition 2.2, indicates that any aggregate of di�erent

trajectories verifying the spatial an temporal similarities can be considered as belonging to identical

states, with ai(qi) being understood as a label representing di�erent trajectories. The symmetry

expression

ai(qi) = aj(qj)) aj(qj) = ai(qi)

indicates that any two aggregates of di�erent trajectories verifying the spatial and temporal simi-

larities can be labeled either as ai(qi) or aj(qj), i.e., the labels are interchangeable. The transitivity

expression

ai(qi) = aj(qj)^ aj(qj) = ar(qr)) ai(qi) = ar(qr)

extends the labeling to every pair of aggregates of trajectories, satisfying the conditions in De�ni-

tion 2.2.

It is worth to note that De�nition 2.2 is not an equivalence relation on the set of trajectories

in Q, but on a set of aggregates of trajectories in Q. Two trajectories fai(qi)jki ; ki � 0g and

faj(qj)jkj ; kj � 0g may be arbitrarily close to each other with the corresponding states verifying

ai(qi) 6= aj(qj); it is enough to have one trajectory generated by ai(qi) lying outside the region

Baj
(qj), i.e, belonging to an aggregate di�erent from the one bounded by Bai

(qi).

De�nition 2.2 leads to the de�nition of equality in the set of actions.

De�nition 2.3 (Equality relation in A) Two actions ai and aj are said to be equal (the rela-

tion being represented by ai = aj) if and only if

8 q 2 Q; ai(q) = aj(q):

By De�nition 2.3, two identical states are not necessarily generated by identical actions. It su�ces

to have the corresponding actions generate trajectories in di�erent bounding sets for two di�erent

initial conditions. In summary, two actions are equal if and only if, applied in identical circum-

stances, they generate equal states in the sense of De�nition 2.2, i.e., maintaining both the spatial

and time similarities.

The transition between states is characterized bellow (De�nition 2.4), through an operation of

state composition. This operation endows T with a motion generator, i.e., a mechanism able to

transform elements of T into other elements of T .

De�nition 2.4 (State composition) Consider an agent entering the state aj(qj) at some con-

�guration aj(qj)jk, and time k = 0. At time kj, some decision mechanism requires the switch to

the state ai(qi), which started its execution at an unspeci�ed time ki at a neighbourhood of qi. The

operation � : T � T ! T , ai�j(qj) = ai(qi) � aj(qj) verifying

ai�j(qj) � Bai
(qi) [Baj

(qj)

ai�j(aj(qj)jkj)jkj 2 Baj
(qj)

ai�j(aj(qj)jkj)jki 2 Bai
(qi)

9>=
>; if Bai

(qi) \ Baj
(qj) 6= ;

no meaning, otherwise

is called the state composition operation.

The trajectory resulting from the composition ai�j is composed by the trajectories, aj(qj)j0�k�kj ,

ai(qi)jk�ki and, if necessary, it also includes a path linking aj(qj)jkj and ai(qi)jki . In addition, note

that the initial con�guration, qi, of an arbitrary state ai(qi) is not necessarily the con�guration

where the agent enters it.

The state composition operation de�nes the basis algebraic structure in the set of actions through

which the agent is controlled. The following proposition characterizes this structure (see demon-

stration in Appendix A).

Proposition 2.1 (The A group of aggregates of feasible trajectories) Under the state com-

position operation speci�ed by De�nition 2.4, A is a local group of transformations of Q.

The group structure is represented in Figure 1, integrated in an architecture with two main building

blocks, denoted as Supervision and Execution. The Supervision block de�nes a sequence of elements

of T (states) to be reached during the execution of a task, e.g., driving the mobile platform away

from an area cluttered with obstacles. Each of the states in the sequence is dispatched to the

Execution block. Whenever a new state from the Supervision is received by the Execution block,

detailed in Figure 1b, it is composed, by the
 block, with the agent's current state. The C-space

trajectory generated by the resulting state is then followed by the agent. The
= blocks represent

transformations that preserve the equality relation. The feedback path returns to the Supervision

block the necessary information on the current task status.

Supervision

Execution

����

�
�
�
�

(a) Conceptual architecture

1Action =

x =

=

��

Actionn��
��
��
��

��
��
��
��

Supervision

Environment

Robot
Action

(b) Behaviour-based architecture.

Figure 1: Conceptual architectures.

Many of the current architectures for robot control �t under the conceptual scheme of Figure

1a. Two such representative examples of very di�erent paradigms are the Organization, Coordi-

nation, Execution hierarchy proposed by Saridis, [Saridis, 1996], and the subsumption architecture

proposed by Brooks, [Brooks, 1986]. In the �rst case, the Supervision block contains the Organi-

zation level and part of the Coordination level. In the second case, the Supervision is represented

by the interconnections between the individual modules of the subsumption architecture. In both

paradigms the basis mechanism of group operation is not identi�ed. Instead, the concepts of hor-

izontal and vertical decomposition, [Brooks, 1986], are used to separate the architectures in two

di�erent classes. The idea of group operation, introduced in this paper, appears to be a unifying

link among these two classes of architectures. It is a basis motion generator that naturally leads to

the equivalent architecture of Figure 1b. It is interesting to note that a recent approach in the area

of compiler design uses a behavioural technique to de�ne a number of fundamental (in the sense

that they capture the compiling basics) operators in the compiling process (see [Knapp, 1996]).

2.3 Maneuvering in T

The transition between arbitrary states, aj(qj) and ai(qi), is triggered by the events that determine

the agent's depart from aj(qj) to start the link trajectory, and the depart from the link trajectory

to enter ai(qi). The positioning of these events in the regions bounding the states determines the

four possibilities for the trajectories generated by ai(qi)�aj(qj), represented in Table 2 as sequences

of actions.

Type Action sequence

1 aj ! ai,

2 aj ! ~a�1
i
! ai,

3 aj ! ~a�1
j
! ai,

4 aj ! ~a�1
j
! ~a�1

i
! ai.

Table 2: Sequences of actions to maneuver in T .

Assuming that ai(qi) and aj(qj) verify the minimum space requirements that are a consequence

of the group structure (see Proposition A.1 in Appendix A), the existence of the ~ai; ~aj actions

is assured by setting (for example) ~ai = ai and ~aj = aj , as any maneuver necessary to the link

trajectories is contained inside the region bounded by Bai
(qi) [Baj

(qj). In type 1 maneuvers, the

execution of the action ai begins at the con�guration where the execution of action aj ended, or

the link path between the states can be executed using one or both of the actions ai; aj . In type

2 maneuvers, the agent enters the set bounding ai in a region such that it is necessary to \pull it

back" to a proper neighbourhood of qi. In type 3 maneuvers, action aj needs to be \pulled back"

for the trajectory to enter the set bounding ai. In type 4 maneuvers, action aj is \pulled back" till

the trajectory enters the set bounding ai and again \pulled back" to have the agent entering the

state ai(qi) at a proper neighbourhood of con�guration qi.

The state bounding sets allocated to each action may not contain enough space to account for the

constraints imposed by the maneuvers de�ned in Table 2. For example, consider a cart with a

lower bound on the turning radius and an unexperienced user de�ning a set Ap with actions that

generate tight curves. Furthermore, the supervisor may specify initial con�gurations such that

the minimum overlap requirement is not veri�ed. The requirements expressed in De�nition 2.4

for the composition of states can be veri�ed by the de�nition of a number of intermediate states

such that the generated trajectories always lie inside the corresponding bounding regions. When

considered over the entire state space, this strategy leads to a minimum number of actions necessary

to de�ne such intermediate states. To avoid the extensive state space search, parts of the region

Bai
(qi) [Baj

(qj) can be expanded such that the maneuvers of Table 2 can be used.

The expansion of Bai
(qi) [Baj

(qj) such that the state composition ai(qi) � aj(qj) is meaningful is

de�ned through an additional operation in A.

De�nition 2.5 (The state expansion operation �) Let ae denote the null action of the A

group of transformations and let ai(qi) and aj(qj) be two arbitrary states such that Bai
(qi) \

Baj
(qj) 6= ;. The state de�ned by ak(qj) = ai(qi)� aj(qj) veri�es

ak(qj) � Bai
(qi) [Bae(qk)[Baj

(qj); ak(qj) aj(qj)

for some qk 2 Bai
(qi)\ Baj

(qj).

Everything that can be done in T is expressed by the operations of state composition and state

expansion. State composition determines trajectories �tting inside the bounding sets. State ex-

pansion enlarges the bounding states so that a particular trajectory �ts inside.

The following proposition (see demonstration on Appendix B) characterizes the resulting structure.

Proposition 2.2 (A non proper semiring structure on A) Assuming the detection of appro-

priate events, the operations of state composition and state expansion de�ne a non proper semiring

structure on A.

The practical e�ect of this proposition appears in the implementation of the conceptual architecture,

embedded in the algorithm that iteratively creates the state bounding sets.

3 Implementation

From a user point of view, it is of interest that a user friendly methodology for the de�nition of

the state bounding regions is available. Furthermore, a simple computational implementation is a

desirable requirement, in order to rend possible a real time application. This is accounted in the

following topics:

1. Consider the robot C-space represented by the direct sum of two subspaces, Q = E�U . Denoting

by PE : Q 7! E the projection mapping onto E, assume that the state bounding set Bai
(qi) is

such that Bai
(qi) � B ai (qi), where

Bai (qi) = PE(Bai
(qi))� U: (2)

By using Bai (qi) instead of Bai
(qi), the de�nition of the actions in Ap is simpli�ed, as the

number of degrees of freedom considered is reduced. The set E is problem dependent. For

example, for the cart mobile platform it is common to have E = f(x; y)g (the robot position)

and U = f�g = [0; 2�[(the robot orientation). The de�nition of the state bounding regions is

made in the set E and then extended with the set U .

2. Given an arbitrary state ai(q), de�ne a covering fBp(qp); p = 0; : : :g for Bai (q), where each

Bp(qp) is a user de�ned subset, path connected and bounded by a closed subset of Q. If an

agent is in state ai(q), the B
p(qp) sets verify, for p = 0; 1; : : :,

qp 2 Bai (q)

9 r 6= p : Bp(qp) \Br(qr) 6= ;

[pB
p(qp) � Bai (q):

(3)

3. Complex interactions between the agent and the environment may require state bounding sets

which might be di�cult to visualize a priori. Using the covering procedure of step 2, the state

bounding set can be incrementally de�ned by sequentially joining the Bp(qp) subsets. Each

time the agent goes outside an element Bp(qp) into a region not yet covered, a new element

Bp+1(qp+1) is joined to the covering. During a multiple task mission, a new covering is started

each time a task is �nished and the agent starts moving towards the next task.

4. The trajectories generated by a(q) can be partitioned into a sequence of small parts, denoted

by ap(qp), each of which is contained in a subset Bp(qp). While inside Bp(qp), the agent follows

the trajectory generated by ap(qp), switching to the trajectory generated by ap+1(qp+1) when

it enters the subset Bp+1(qp+1). The ap(qp) are called pseudo-states to emphasize the fact that

they represent only parts of trajectories that eventually may not be completely contained inside

the Bp(qp) subsets.

Provided that the requirements of Proposition A.1 are veri�ed, the state composition operation can

also be used to represent the trajectories generated by sequences of pseudo-states. As for the state

expansion, given any two pseudo-states ap(qp); as(qs) such that Bp(qp) \ Bs(qs) 6= ;, the pseudo-

state ap�s(qs) = ap(qp) � as(qs) generates trajectories always inside Bp(qp) [Bs(qs). However, if

necessary the trajectories can occupy the expanded region Ba
p(qp)[Bae(qw)[Ba

s(qs) that bounds

the pseudo-state ap�s(qs), for some qw 2 Bp(qp) \ Bs(qs). In addition to the state expansions

de�ned by the supervisor, during multiple executions of the same task a process similar to state

expansion occurs whenever the covering needs to be enlarged for the trajectory to �t in. Di�erent

coverings contain trajectories that lead to the execution of the assigned task. If a trajectory is

contained in two di�erent coverings then each of the coverings can be considered as an expansion

of the other.

Table 3 summarizes the algorithm outlined in the above topics. The algorithm incrementally

generates a sequence of pseudo-states, ap(qp); p = 0; 1; : : :, such that the trajectories leading to

the task execution are generated by the composition of the pseudo-states ar(qr) � ar�1(qr�1) � � � � �

a1(q1)�a0(q0) and are bounded by the cover set [r
p=0B

p(qp). Furthermore, the algorithm introduces

a mapping, denoted by F , that records the ap actions taken at each enlargement of the covering, so

that the agent can use the past experience therein registered in subsequent executions of the task.

Figure 2 shows the detail of the behaviour-based architecture with the inclusion of the elements

of Table 3. The dashed lines represent the control lines from the supervisor, through which the

states to be composed and expanded are chosen. The state expansion presented in Figure 13b of

Appendix B is considered.

1 Set the time variable, k = 0, and the index variable, p = 0.

2 De�ne ap(qp) = a(q), where a(q) is the agent's present state.

3 De�ne the subset Bp(qp), containing ap(qp)j0.

4 De�ne the mapping F : Q 7! A such that F (qp) = ap.

5 If 9 w � p : ap(qp)j
k
2 Bw(qw) then switch to the pseudo-state ap(qp), such that ap =

F (qw), i.e., the horizon of execution of the pseudo-states ap(qp) is limited by the regions

Bp(q).

6 Otherwise,

6.1 Let p = p+ 1.

6.2 Let qp = ap�1(qp�1)j
k
.

6.2 Let F (qp) = ap = a, where a(qp) is the new state, de�ned by the Supervision block,

to where the agent must switch to.

6.3 De�ne a new region Bp(qp).

7 Go to step 5.

Table 3: The covering build algorithm.

Instead of relying exclusively on the Supervison block for the choice of the actions, the covering

build algorithm can be improved by searching in the space of actions. A search algorithm, applied

=

ai =

j
��

x
a

=

=ak

��
��
��
��

F

Supervision

Figure 2: Detail of the behaviour-based architecture, after Table 3.

at steps 5 and 6 of the algorithm of Table 3, is de�ned in Table 4.

1 De�ne an action modi�er mapping M : A 7! A.

2 De�ne a metric in S � T to compute a distance between states.

3 Using the metric de�ned in step 2, apply M to each of the k-nearest neighbours of ap(qp),

for each p.

Table 4: The search stage of the covering build algorithm.

The mapping M searches the a priori unexplored regions of Q, which correspond to the subspaces

denoted by U in (2). Given a value for the index p, M only modi�es that part of an action

generating trajectories contained inside Bp(qp).

A version of the algorithm in Tables 3 and 4 appeared in [Millan, 1997] under the name of Incre-

mental Preserving Topology Map (ITPM).

When running several times over the same task, the algorithm in Tables 3 and 4, generates trajec-

tories in Q that tend to become aggregated in well de�ned regions of the C-space. These regions

bound the trajectories generated by equal states and are called behaviours.

The correspondence between the concepts de�ned in the previous sections and the basis building

blocks of the behaviour-based architecture represented in Figure 1b is given in Table 5, along with

the implementation guidelines proposed in this section.

Concept Block Symbol Implementation

Action $ Action $ Actioni $ Q subspaces

Group operation $ State composition $
 $ Robot dependent

Supervisor $ Supervision $ Supervision $ Finite State Machine

Equality relation $ State equality $
= $ Tables 3 and 4

State expansion $ State expansion $ � $ Table 3 and supervisor

Table 5: Correspondences between concepts and basis building blocks.

4 A decentralized cooperation model

The intuitive notion of cooperation is supported on the idea that no centralized supervising scheme

is necessary to have multiple agents jointly executing some task. This notion of cooperation re-

quires that each supervisor be prepared to interpret incoming information from other agents, and

that proper connections between agents exist so that the necessary information can be exchanged.

Figure 3 shows a system with three agents fully interconnected, where each cij represents the

existence/absence of an interconnection from agent i to agent j.

Agent 3

Agent 2
Agent 1

c12

c13

c21c31 c32

c23

��
��
��
��

�
�
�
�

����
�
�
�
�

����
����

Figure 3: Multiple agents interconnection.

The classical technique to treat multiple agent systems is to jointly consider their state spaces. For

a n-agent system the state set is then de�ned by the n-tuple ~t = (t1; : : : ; tn) where ti is the state

of agent i. The task assigned to the system, called the global task, is represented by an element

of this joint space, ~tt = (at1(qt1); : : : ; atn(qtn)), with ati(qti) representing the task assigned to the

i-th agent. For the sake of readability, the set of all global tasks is denoted by T = f~ttg. The

Supervision block of the i-th agent receives the state information from all the agents with whom

the i-th agent is connected. Representing by Ti the state space of the i-th agent, the Supervision

block implements a mapping Si : T1� : : :�Tn�T 7! Ti, i.e., it determines the state to be followed

by the Execution block, given its own state, the states of the other agents and the global task

assigned to the system.

The task assignment problem is then related with the subdivision of the global task among the

agents that maximizes the performance of the system. Assuming an adequate global task ~tt subdivi-

sion among the agents and the corresponding controllability properties, each of the Si generates an

output converging to its own assigned task, ~tti , independently of the connections cij , i.e., the whole

system executes the global task ~tt without exchange of information between the agents. Moreover,

assuming no explicit central supervision scheme other than the global task subdivision, and using

the C-space extension technique, a decentralized model de�ning how the multiple agent system

evolves along the event axis is represented by

2
64

t1
...

tn

3
75
k+1

=

2
64

S1(t1; ~tt1)
...

Sn(tn; ~ttn)

3
75
k

(4)

where k represents the event index and ~tti is the task assigned to the i-th agent.

In model (4), the task assigned to the i-th agent, ~tti , contains the su�cient knowledge to be executed

in such a way that the whole set of agents exhibits the desired behaviour without any information

exchange. It is implicitly assumed that no non modelled disturbances exist.

In general, the ideal, or even adequate, task assignment assumption is not valid, [Brocket, 1993].

To overcome this problem, model (4) is extended with the knowledge about the global task, ~tt (and

not just a particular task ~tti) and about the state of other agents so that it can adjust its behaviour,

i.e.,

2
64

t1
...

tn

3
75
k+1

=

2
64

S1(c1; ~t; ~tt))
...

Sn(cn; ~t; ~tt))

3
75
k

(5)

where ci = (ci1; : : : ; cin) de�nes the interdependence of agent i from the remaining agents. Model (5)

has the ability to adjust the performance of their respective agents as a function of the performance

of the other agents. Thus, it may account for poor task assignments that, although the global task

is executed, lead some of the agents to a �nal state di�erent of their respective assigned tasks. This

is a characteristic of cooperation problems, where not all of the agents need to complete their tasks

for the system to have its global task executed. Equivalently, instead of assigning a single task to

each single agent, a set of tasks is assigned to each of them and the agent chooses one task in this

set to execute. Representing by Vi(~ti) the subset of states the i-th agent can be in at the end of

the global task execution, a global task can be represented by

~t = (~t1; : : : ; ~tm; Vm+1(~tm+1); : : : ; Vn(~tn))

where the �rst m agents are required to execute a speci�c task and the remaining n �m agents

need only to reach some state in their respective Vi(�) subsets. In what concerns the execution of

the global task, each of the �rst m agents has to detect all of the necessary and su�cient events,

whereas the remaining n �m agents may fail to detect some events and still reach a task in their

Vm(�) subsets.

The Finite State Machine implementation of the Supervision block can be represented by a mapping

between a set of events and the agent's state space. For a system with m agents and Ap =

fa1; : : : ; ang, a possible skeleton structure for the i-th agent supervisor is de�ned by:

do f

if E1
i1(t1) == 1 then f

switch to new state by a1(q11) � ai(qi);

if necessary perform a1�i(qi)� ax1(qx1); for some ax1(qx1) g
...

if En

i1(t1) == 1 then f

switch to state an(q1n); : : : g
...

if En

im
(tm) == 1 then f

switch to state an(qnn); : : : g

else keep the present state

g

while 1

(6)

where Ek

ij
: Tj 7! f0; 1g is the mapping that de�nes the pre-conditions for the detection of the k-th

event, given the state information from the j-th agent, and f0; 1g indicates that the event was,

respectively, undetected or detected. For the sake of simplicity, it is assumed that each event is

determined by information from a single agent.

Assuming that the tasks assigned to each of the �rst m agents can be reached using some sequence

of states, then each of the agents is required to detect the corresponding events, so that the global

task can be executed. Thus, using supervisors of the type de�ned by (6), the connections for

the �rst m agents are implicitly de�ned. In general, multiple solutions for the connections to the

remaining n�m agents are possible. To every sequence of states driving the agent towards one of

the states in the respective Vi(�) subset corresponds a sequence of events that has associated a set

of connections, de�ned in (6), and hence establishes a relationship between the controllability of

the whole set of agents and the interconnections between them.

5 Case study

This section details the practical example considered in this paper. Figure 4 shows a 3D view of

the environment used to display the results. Two types of setups were considered, the �rst using

only simulated robots whereas the second uses a real mobile manipulator and a simulated one. The

two mobile manipulators, named MM0 and MM1, are considered to have identical characteristics.

Figure 4: A 3D perspective of the simulation environment.

A mission for the whole system is a set of tasks, each one being speci�ed by a set of workspace points

for each mobile manipulator, e.g., aiming at approaching a shelf, placing the bar in an adequate

con�guration and dropping it on the shelf. At each task location a null action is executed.

The environment considered has no obstacles. However, since one of the grasping points is allowed to

slide along the bar, each mobile platform must have detection and collision avoidance capabilities.

If both mobile manipulators grasp the bar near the extremities no collision between the mobile

platforms will occur since the length of the bar (3 m) is greater than the sum of the maximum

lengths spanned by each mobile manipulator (0.92 m). Each mobile platform has an odometer

system and a ring of 24 ultrasound sensors. The mobile platforms are of the cart type and the

manipulators are holonomic, with six rotation joints. The �rst three joints make the positioning

in the x; y; z workspace whereas the last three joints de�ne the gripper orientation. It is assumed

that MM0 grasps the bar at one of the extremities using a non actuated universal joint to make

a compliant connection. The MM1 grasps the bar using also a universal joint, but in a non-rigid

form, i.e., the grasping point is allowed to slide between the grasping point used by MM0 and the

opposite extremity of the bar.

The manipulator is divided in two agents: the �rst three joints (the arm), used for the x; y; z

positioning compose one of the agents while the last three joints (the gripper), used for �; �;

positioning, compose the other agent. This led to the de�nition of six agents with each mobile

manipulator being composed by three agents: mobile platform, arm and gripper.

The mobile platform model is given by,2
4 _x

_y
_�

3
5 =

2
4 cos(�) 0

sin(�) 0

0 1

3
5 � � v

!

�
; (7)

where the control variables, the linear and angular velocities, v and !, are constrained by jvj � 0:2

m/s, j!j � 1 rad/s, and jv=!j � 0:4 m, for v 6= 0. The rectangular basis of the mobile platform is

1012 mm long by 696 mm wide. The arm kinematics is described by the velocity model2, where l1
and l2 represent the lengths of the two arm links (see [Craig, 1986]):

2
4 _x

_y

_z

3
5 =

2
4 s0(�l1c1 + l2s12) �c0(l1s2 + l2c23) �c0c12l2

c0(l1c1 � l2s12) �s0(l1s1 + l2c12) �s0c12l2
0 �l1c1 + l2s12 l2s12

3
5 �
2
4 _�0

_�1
_�2

3
5 = J(�) �

2
4 _�0

_�1
_�2

3
5 : (8)

The three joints of the arm have physical limits j�0j � 135�, j�1j � 123� and j�2j � 135�, with a

maximum angular velocity of 0:2 rad/s for all. The physical dimensions are l1 = 300 mm, l2 = 400

mm. The gripper is 220 mm long and its kinematics is de�ned by,

2
4 �

�

3
5 =

8>>>><
>>>>:

�
arctan2(r10; r00) if� 6= ��=2

0 Otherwise

arctan2(�r20;
p
r200 + r210)�

arctan2(r21; r22) if� 6= ��=2

� arctan2(r01; r11) if� = ��=2

; (9)

where the rij are the elements of a 3-dimensional rotation matrix de�ned by the Euler angles �; �;
.

See [Craig, 1986] for details. No physical joint limits were considered for the gripper.

The robots simulators and the behaviour-based architecture are implemented in two distinct pack-

ages, using socket-based communications between them. The average sampling time is 0.3 s. As

for the real setup, data is exchanged with the control architecture at 9600 baud increasing the

average sampling time to 0.62 s. The
= blocks are integrated using a client-server software design;

whenever an action is selected it acts as a client by sending requests to the equality block servers for

eventual adjustments. If such alternative exists, it is used whenever possible. Otherwise the basis

actions are used. The system handles losses of requests/answers simply by repeating the requests.

Finite State Machines implement the Supervision blocks.

The agents in MM0 use a passive strategy in what concerns changes of their tasks, i.e., if the

distance between the two grasping points lies outside the interval [1:4; 2:5] meters, MM0 stops

and waits until the distance lies again inside the referred interval. Otherwise, MM0 maintains its

original task. MM1 uses an active strategy, i.e., it tries to accomplish its mission unless the distance

between the grasping points lies outside the aforementioned interval, in which case the supervisors

2The abbreviations si = sin(�i), ci = cos(�i), sij = sin(�i + �j) and cij = cos(�i + �j) were used, with �i the i-th

joint variable.

of the agents change their tasks so that MM1 can approach MM0. The information exchanged

between MM0 and MM1 is limited to the position of the grasping points and the orientation of the

bar.

In the missions considered, the tasks assigned to the agents in the system require that each one

of them does nothing when the task location is reached, i.e., require the application of the null

action at the task location. Each task location, qt, is composed by a position and an orientation.

Thus, a task will be represented by ai
e
(qi

t
), where the superscript i will be g, a, or v, respectively

representing gripper, arm, and vehicle and the subscript e stands for the null action. All the global

tasks considered in this paper are de�ned relative to the gripper. The subdivision of a global task,

ae(qt) = a
g

e([xt; yt; zt; �t; �t;
t]
0), into the task to be performed by each agent is established by8<

:
av
e
(qv

t
) = av

e
([xt; yt]

0)

aa
e
(qa

t
) = aa

e
([xt; yt; zt]

0)

a
g

e(q
g

t
) = a

g

e([�t; �t;
t]
0)

(10)

and performed at supervision level. The task assignment de�ned by (10) indicates that the mobile

platforms are not constrained to reach any particular orientation. The arms handle the gripper's

positioning in the 3D workspace assuming that the grippers are able to orient themselves to the

speci�ed tasks. A similar behaviour-based control scheme was presented in [Sequeira et al., 1998]

for a single mobile manipulator with the same characteristics as the ones used in this paper.

5.1 Mobile platform actions

The set of actions available to the mobile platform is limited to the four actions, null action,

go straight to goal and avoid obstacle described bellow. This set of actions is the minimum

necessary for a mobile platform to navigate in an obstacle free environment but in which obstacle

avoidance interactions with the other mobile platform are expected.

Null action This action sets the linear velocity of the platform to zero. A pure rotation is an

example of the null action.

Go straight to goal This action computes the initial con�guration for the next state by analyzing

the error between the task and the actual con�guration, ev
t
= qv

t
� qv. If, in the meanwhile,

the arm completes its own task then the mobile platform supervisor changes the task to make

it stop.

This action generates its trajectories using the vector �eld

ev
t
�
� < ea

t
; ev

t
> =kev

t
k

where ea
t
is the arm task error vector, <;> stands for the scalar product and
 is a weighting

constant. Whenever the projection of the arm task error vector over the platform task error

vector goes to 0, the action tends to the null action.

Avoid obstacle The avoid obstacle action computes a vector �eld using a set of a priori de�ned

lookup tables (LUTs) integrated with the ultrasound sensors. For the missions illustrated

in this paper, �ve LUTs were used, respectively de�ning vector �elds for the situations for-

ward/backward wall, left/right wall, and general obstacle situation. The ultrasound data is

used to choose which of the LUTs re
ects better the current environment, around the mobile

robot platform.

5.2 Mobile platform state composition

Each of the available actions is continuously generating reference motion directions for the mobile

platform to follow. The user speci�es the actions in the x; y space, leaving unspeci�ed the �

coordinate. This amounts to say that the trajectory generated by the action is contained inside

the region verifying 0 � � < 2�.

The link path between the con�gurations q = (x; y; �) and qi = (xi; yi; �i) is the trajectory generated

by the control law �
v

!

�
=

�
cos(�) sin(� + �)kpk

sin(�) cos(� + �)kpk

��1 �
_xd
_yd

�
; (11)

where p is a vector described in the mobile platform reference frame and � its orientation relative

to the same reference frame, and with�
_xd
_yd

�
=

��
xi � x

yi � y

�
� �

�
�(yi � y)

xi � x

��
�; (12)

where � and � weight, respectively, the convergence rate to the reference point and the control

e�ort. The �rst term on the right side of (12) \pulls" the mobile platform orientation towards

the orientation of the line joining (x; y) and (xi; yi). The second term in (12) \pulls" the mobile

platform position to the desired (xi; yi).

It is interesting to interpret the expression (11) within the proposed framework. Representing

by U = f[v; !]0g the space of controls and by T the time, the control law in (11) is a mapping

Q � Q � T 7! U , where the �rst term Q stands for the space of initial con�gurations and Q �

T represents the trajectory generated by (12). The cart model maps the space of controls and

the current state (present con�guration together with present velocity) into the next state future

(con�guration together with future velocity), i.e., U � Q � Q �T 7! Q � Q �T. The composed

mapping yields Q�Q�T�Q�Q�T 7! Q�Q�T, which is coeherent with the de�nition of the

state composition as a mapping T � T 7! T .

The state composition operation de�ned by (11) always generates controls, v and !, that drive

the mobile platform to a neighbourhood of the reference con�guration qi = (xi; yi; �i). Using the

de�nition of the null action for the mobile platform, it is guaranteed that the link path in the state

composition ai(qi) � aj(qj) ends in a neighbourhood of qi de�ned by ae(qi).

Replacing (12) in (11) and using the cart model yields,

_q =

2
4 cos(�) cos(� + �) � cos(�) sin(� + �)

sin(�) cos(� + �) � sin(�) sin(� + �)

�sin(�) cos(�)

3
5
��

1 0 0

0 1 0

�
� �

�
0 �1 0

1 0 0

��
(qi � q)�

cos(�) cos(� + �)� sin(�) sin(� + �)
(13)

which simpli�es to

_q =

2
4 cos(�) cos(� + �)� � cos(�) sin(� + �) cos(�) cos(� + �)�� cos(�) sin(� + �) 0

sin(�) cos(� + �)� � sin(�) sin(� + �) sin(�) cos(� + �)�� sin(�) sin(� + �) 0

� sin(�) + � cos(�) � sin(�)�+ cos(�) 0

3
5 (qi � q)�:

(14)

A straightforward calculation indicates that the null space of the matrix in (14) is the subspace

spanned by (0; 0; �). Since the matrix in (14) is bounded, the system is stable, which means

that either it has limit cycles or converges to one of the equilibrium points. Since the subspace

of equilibrium points coincides with the null space of the matrix, q converges to a point in the

subspace spanned by q = [xi; yi; �]
0.

5.3 Arm and gripper actions

The gripper has a unique action that is continuously trying to make it achieve the task orientation.

The actions of the arm are described in the sequel.

Go straight to goal This action computes the direction of the task error vector, ea
t
= qa

t
� qa,

and generates the joint velocities that force the arm to move in the direction of ea
t
. Whenever

the e�ective arm length, measured by the x; y; z position in the arm reference frame, exceeds

a pre-speci�ed threshold, only the motion component for the base joint is used. This keeps

the arm in the workspace region with high manipulability.

Approach goal This action is identical to the previous one, except that no constraint on the

manipulability is used. It can be applied only in a close neighbourhood of the task.

Get out of singularity I region (S1) This action prevents the arm of entering the workspace

region of low manipulability, near a mechanical singularity, composed by a spherical crown

with 0.1 m, centered in the arm base. A vector �eld that orients the arm towards the task

while reducing its e�ective length generates the corresponding trajectories.

Get out of singularity II region (S2) This action prevents the arm of entering the workspace

region of low manipulability, also near a mechanical singularity, de�ned by the 0.3 m diameter

cylinder, with the vertical z as its symmetry axis. The corresponding trajectory is generated

by a vector �eld that orients the arm towards the task while increasing its e�ective length.

Get out of double singularity zone This singularity region is de�ned around the vertical z

axis where the e�ective arm length exceeds 0.6 m. A �xed vector �eld generates a motion

direction that forces the arm to move to a �xed position in the high manipulability region of

its workspace. The e�ect of this action is clearly visible, as an abrupt descent, in the �rst

phase of the trajectories made by the grippers, in all of the missions considered ahead in the

paper.

Null action This action simply stops the motion of the arm.

5.4 Manipulator state composition

From a user viewpoint, the set of actions used by the arm is better speci�ed in Cartesian coordinates.

The transformation between the Cartesian and the joint velocity spaces is made through the inverse

Jacobian matrix, J(�)�1 in (8),

2
4 _�0

_�1
_�2

3
5 = J(�)�1 �

2
4 _x

_y

_z

3
5 (15)

outside the singularity regions. The state composition for the arm agent is not constrained by the

kinematics. Therefore, the path linking any two states is speci�ed using the action generated by

the vector �eld (15).

5.5 Experimental results

This section presents the results obtained in three missions. The �rst setup considered is composed

of two simulated mobile manipulators, using simple integrator dynamic models, whereas in the

second setup one of the manipulators is real.

In Mission 1 the twomobile manipulators must carry the bar dropping it on a shelf with both the real

and simulated setups being considered. In Mission 2 the simulated mobile manipulators, carrying

the bar, must reach a sequence of speci�ed locations, with a non-cooperative task assignment

that rends impossible the execution of the complete missionl assigned to MM1. In Mission 3 the

interaction between the two mobile manipulators in a possible warehouse application is tested with

the real setup. Each mission is speci�ed in a tabular form containing the x; y; z; �; �;
 coordinates

of both grippers, the orientation, �, of the mobile platforms and a tolerance value representing

maximum distance, at the task completion, between the grippers and their task location. In all

the tasks the gripper orientation is speci�ed to minimize any potential collision between the bar

and the arms. In Mission 3 the concept of dominating agent, in each of the mobile manipulators,

is introduced. Whenever the dominating agent �nishes its task the remaining agents in the mobile

manipulator also terminate their current tasks.

The results are presented in 2D and 3D plots. The plots in the xy plane show the trajectories of

the mobile platforms (dashed lines) and of the grippers (solid lines), for both mobile manipulators.

The plots in the xz plane and in the 3D workspace show the trajectories for the two grippers. The

starting and the task locations are marked, respectively, with � and +. It should be noted that the

di�culty of having a clear 3D representation limits the readability of the Figures and rends di�cult

the assessment of the system performance, which is clearly displayed with a video. MPEG 2 video

�les, showing the performance of the system in multiple missions and using 3D graphics similar

to Figure 4, available at the World Wide Web URL http://lrm.isr.ist.utl.pt under the COOPERA

project or by e-mail to the authors.

5.5.1 Mission 1 - Easy task assignment

This mission considers the transportation of the bar between two shelves of a warehouse. The

mission tasks were chosen to simplify the motions of both mobile manipulators by minimizing the

possibility of interactions of obstacle avoidance type. Task 1 represents the approach phase, Task

2 the raise of the bar to the shelf level, and in Task 3 the bar is laid down on the shelf. The task

assignment is shown in Table 6. The value for the z component of Task 3 location may force the

arm to enter a con�guration in the singularity region S1 and lead to some maneuvering. Figures 5

and 6 show the obtained trajectories, respectively for the simulated and real setups.

The small variations in the orientation, observed in Figure 5, result from the small motion steps

used by the mobile platform Go Straight to Goal action which also cause the narrow blurred

trajectories in the region between Tasks 2 and 3.

x y z � � �

Origin 3.9 2.07 0.92 0 0 0 0
Task 1 2.5 1 0.4 - 0 -0.7 0
Task 2 2.5 1 0.5 - 0 -1 0
Task 3 2.5 0.9 0.5 - 0 -1.57 0

MM0.

x y z � � �
 tolerance
6 2.9 0.92 �=2 0 0 0 -
4.5 1 0.4 - 0 -0.7 0 0.05
4.5 1 0.5 - 0 -1 0 0.05
4.5 0.9 0.5 - 0 -1.57 0 0.05

MM1 .

Table 6: Task assignment.

2 2.5 3 3.5 4 4.5 5 5.5 6
0.5

1

1.5

2

2.5

3

x (m)

y
 (

m
)

Trajectories of the Grippers and Mobile platforms

MM 0

MM 1

0 200 400 600 800 1000 1200 1400 1600 1800
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time x 0.3s

T
h

e
ta

 (
ra

d
)

Mobile platforms orientation

MM 0

MM 1

2 2.5 3 3.5 4 4.5 5 5.5 6
0.2

0.4

0.6

0.8

1

x (m)

z
 (

m
)

Grippers trajectories

MM 0

MM 1

0 200 400 600 800 1000 1200 1400 1600 1800
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Time x 0.3s

d

Distance between the bar grasping points

2
3

4
5

6

0.5

1

1.5

2

2.5

3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (m)y (m)

z
 (

m
)

Grippers trajectories

MM 1

MM 0

Figure 5: Mission 1 plots using the simulated setup - Mission of Table 6.

As for the results obtained using the real setup, the initial part of the trajectories can be qualita-

tively compared with those obtained using the simulated one. The increased delay in the feedback

loop, along with the changes in the assigned tasks due to the distance between the bar grasping

points going outside of the [1:4; 2:5] meters interval, shows its in
uence in the initial maneuvers.

Note that the bar almost felt down (the maximal distance between the grasping points reached

2.995 m) precisely in this initial part of the trajectory. After this transient phase the distance be-

tween the grasping points is approximately constant. Also in the initial phase, the mobile platforms

show large variations in the orientation which are a consequence of the need to maneuver. In the

�nal phase of the mission, some obstacle avoidance interaction between the two mobile platforms.

The long time taken by the mission is due to the gripper in MM1 moving slowly towards the task

location. Both mobile platforms were already stopped along time ago, as can be inferred from the

plot representing the orientations.

2 2.5 3 3.5 4 4.5 5 5.5 6
0.5

1

1.5

2

2.5

3

x (m)

y
 (

m
)

Trajectories of the Grippers and Mobile platforms

MM 0

MM 1

0 500 1000 1500 2000 2500 3000 3500
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time x 0.62s

T
h

e
ta

 (
ra

d
)

Mobile platforms orientation

MM 0

MM 1

2 2.5 3 3.5 4 4.5 5 5.5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (m)

z
 (

m
)

Grippers trajectories

MM 0

MM 1

0 500 1000 1500 2000 2500 3000 3500
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Time x 0.62s

d

Distance between the bar grasping points

2
3

4
5

6

0.5

1

1.5

2

2.5

3
0

0.2

0.4

0.6

0.8

1

x (m)y (m)

z
 (

m
)

Grippers trajectories

MM 1

MM 0

Figure 6: Mission trajectories using the real setup - Mission of Table 6.

5.5.2 Mission 2 - Using
= blocks

The mission speci�ed in Table 7 demonstrates the global performance, of the architecture in Figure

1b in a mission with a non-cooperative global task assignment, i.e., the distance between some of

the tasks assigned to MM1 and MM0 rends di�cult the execution of the mission. The simulated

setup is used in two series of experiments. The
= blocks are used only in the mobile platform

agents as no di�cult interactions between the manipulators are likely to occur.

x y z � � �

Start 3.9 2.07 0.92 0 0 0 0
Task 1 3 1 0.4 - 0 -0.5 0
Task 2 2.5 1 0.5 - 0 -0.5 0
Task 3 2 1 0.4 - 0 -0.5 0
Task 4 1 2 0.4 - 0 -0.5 0

MM0.

x y z � � �
 tolerance
6 2.9 0.92 �=2 0 0 0 -
1 3 0.5 - 0 -0.5 0 0.15
1 3.5 0.3 - 0 -0.5 0 0.15
-1 2 0.3 - 0 -0.5 0 0.05

MM1 .

Table 7: Mission task assignment.

The �rst series, for which two runs were performed, does not use the
= block and is included for

comparison purposes. The trajectories obtained are superimposed in Figure 7. In both runs, MM0

executes its entire mission while MM1 only executes its �rst task due to the non-cooperative nature

of the task assignment.

The trajectories obtained in the second series (using the
= blocks), for which �ve runs were per-

formed, are superimposed in Figure 8. As in the �rst series, MM0 executes its entire mission in all

the runs of the series whereas MM1 executes its �rst task during the �rst and the second runs. In

the third run, an alternative path was explored without any results as it was not able to execute

-1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

x (m)

y
 (

m
)

Trajectories of the Grippers and Mobile platforms

MM 0

MM 1

0 500 1000 1500 2000 2500 3000 3500
-4

-3

-2

-1

0

1

2

3

4

Time x 0.3s

T
h

e
ta

 (
ra

d
)

Mobile platforms orientation

MM 0

MM 1

-1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (m)
z
 (

m
)

Grippers trajectories

MM 0

MM 1

0 500 1000 1500 2000 2500 3000 3500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time x 0.3s

d
 (

m
)

Distance between the bar grasping points

-2
0

2
4

6

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

x (m)y (m)

z
 (

m
)

Grippers trajectories

MM 1

MM 0

Figure 7: Two runs without the
= block - Mission of Table 7.

-1 0 1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

4

x (m)

y
 (

m
)

Trajectories of the Grippers and Mobile platforms

MM 0

MM 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-4

-3

-2

-1

0

1

2

3

4

Time x 0.3s

T
h

e
ta

 (
ra

d
)

Mobile platforms orientation

MM 0

MM 1

MM 1

-1 0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (m)

z
 (

m
)

Grippers trajectories

MM 0

MM 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time x 0.3s

d
 (

m
)

Distance between the bar grasping points

-2
0

2
4

6

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

x (m)y (m)

z
 (

m
)

Grippers trajectories

MM 1

MM 0

Figure 8: Five runs with the
= block - Mission of Table 7.

1

3

2

4

Figure 9: Typical behaviours of the mobile platforms after 4 runs.

none of its tasks. Nevertheless the small changes in the actions proposed at each of the Bp regions

are enough to have MM1 executing its two �rst tasks in the two subsequent runs. At the time MM0

�nishes its mission, its con�guration is such that it lies between MM1 and its third task. Even

though this task is still in the feasible range, i.e., the distance to the fourth task assigned to MM0

is smaller than the length of the bar, the subsequent constant switching between tasks limits the

progress of MM1.

Figure 9 shows the iterative creation of the Bp regions, by the algorithms presented in Section 3,

along the sequence of the �rst four runs. The trajectories made by the mobile platforms in the

four runs of the mission are represented as pointed lines, with the circles indicating the location of

the tasks in the xy plane. The numbers chronologically identify the sequence of Bp regions3, which

were taken as cylinders in the x; y; � space, with 0.2 m radius and height 2� rad (note that in the

xy space these are simply circles of 0.2 m radius, which greatly simpli�es the implementation of

the algorithm). Small solid lines originated at the qp positions indicate the directions of motion

proposed by the ap action. Neighbour Bp regions are connected by solid lines. For the sake of

readability, these elements are represented with a small displacement regarding their real positions,

thus avoiding superimposing the trajectories of the mobile platforms.

While in the second run, the action proposed at region B8 tends to drive MM0 away from its task.

This action is the result of the convergence towards a direction thats avoids the obstacle avoidance

interaction with MM1. Similar situations arise both in the third and fourth runs with B8 and B9,

in what concerns to MM0. In what concerns MM1, the actions proposed at B16 to B18 and B24

show the in
uence of the aforementioned obstacle avoidance situation that lead to the alternative

path clearly displayed in the third and fourth diagrams.

3For the sake of simplicity, the region B
p(qp) will also be denoted as Bp.

2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

x (m)

y
 (

m
)

trajectories of the Grippers and Mobile platforms

MM 0

MM 1

2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (m)

z
 (

m
)

Grippers trajectories

MM 0

MM 1

2
2.5

3
3.5

4
4.5

5

0

1

2

3
0

0.2

0.4

0.6

0.8

1

x (m)y (m)

z
 (

m
)

Grippers trajectories

MM 1

MM 0

Simulated MM0 - Mission of Table 8.

1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

x (m)

y
 (

m
)

Trajectories of the Grippers and Mobile platforms

MM 0MM 1

1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (m)

z
 (

m
)

Grippers trajectories

MM 0

MM 1

1
2

3
4

5

0

0.5

1

1.5

2

2.5
0

0.2

0.4

0.6

0.8

1

x (m)y (m)
z
 (

m
)

Grippers trajectories

MM 1

MM 0

Real MM0 - Mission of Table 8.

Figure 10: Mission trajectories.

5.5.3 Mission 3 - Crossing

This mission is a variant of the warehouse problem of Mission 1 with the tasks modi�ed to increase

the interaction between the mobile manipulators. The complete architecture of Figure 1-(b) is

used. Table 8 speci�es the task assignment for this mission. In this mission MM0 is a real mobile

manipulator and MM1 a simulated one.

x y z � � �
 tol.
Start 4.5 2.5 0.92 0 - - - -
Task 1 2.5 1 0.5 - - - - 0.2
Task 2 2.5 0.3 0.5 - 0 0 -1 0.05
Task 3 2.5 0 0.3 - 0 0 -1.4 0.08

MM0.

x y z � � �
 tol.
2.5 2.5 0.92 0 - - - -
4.5 1 0.5 - 0 0 0 0.06
4.5 0.3 0.5 - 0 0 -1 0.05
4.5 0 0.3 - 0 0 -1.4 0.08

MM1 .

Table 8: Task assignment.

Figure 10 shows the trajectories of both grippers. It is worth to note the qualitative similarity

exhibited by the plots representing trajectories of the grippers in the xy plane for the two setups

which validates the simulation setup as a tool to test/tune new actions. The natural trajectories for

the mobile platforms (the straight lines between their starting con�gurations and the �rst tasks)

lead to a collision avoidance situation. For the sake of simplifying the mission execution, the mobile

platforms are set, at the mission speci�cation time, as dominant agents during the �rst tasks of

both mobile manipulators. In the remaining tasks the grippers dominate.

The maneuvering in the region close to the starting con�guration of MM1 is the result of the

MM0 - Simulated setup.

MM0 - Real setup.

MM1 - Simulated setup.

MM1 - Real setup.

Figure 11: Emergent behaviours for the mobile platforms.

collision avoidance strategy and also of the task changes necessary to hold the bar, keeping the

distance between the grasping points within the speci�ed interval. The trajectory generated by

MM0 does not exhibit signi�cant maneuvering at the beginning of the mission. Near the middle of

the mission, the abrupt changes in the direction of motion of MM0 are a consequence of a subtle

collision avoidance action taken by its mobile platform. The e�ect of the active strategy in the

task changes by MM1 can be seen in the lowering of the gripper to increase the distance between

the bar grasping points, expressed in the xz plots by the cross of workspace regions with low z

coordinate value.

Figure 11 shows the typical mobile platform behaviours that emerged in a single run of the mis-

sion, with the two setups exhibiting di�erent qualitative behaviours (nevertheless, the grippers

trajectories exhibit a qualitative similarity). The small circles indicate the task locations in the xy

plane.

In the fully simulated setup (uppermost plots), both MM0 and MM1 generate trajectories with

almost no visible in
uence of the collision avoidance action. The use by MM1 of the active strategy

hides the collision avoidance e�ects on the trajectory under the maneuvering to keep the bar in

position, at the region close to the starting con�guration. In the setup using a real MM0 (lowermost

plots) the collision avoidance e�ects are clearly visible in the trajectories of both mobile platforms.

The diagrams for this setup result from two separate runs of the mission. In the �rst run, MM1

1

4

2

5

3

6

Figure 12: Six views of the mission execution.

created the units B0 to B5, leading to a go away behaviour that caused the failure of the mission

execution. During the �rst run, MM0 created units B0 to B12, being able to reach the location of

its �rst task. The adjustment of the ap actions by the algorithm of Table 4 enables MM1 to take

the appropriate direction in the second run of the mission. During this second run MM0 created

the additional units B13 to B18 as a result of the collision avoidance with MM1 at the approach of

its �rst task.

Figure 12 shows a sequence of six views taken during one run of the mission.

6 Conclusions

This paper presented a behaviour-based architecture for robot control supported in a framework

based in algebraic group theory. Within the proposed framework, behaviours are equivalence classes

in a state space whose elements are aggregates of robot trajectories. Moreover, this framework

supports a rather intuitive programming methodology that uses subspaces of the robots C-spaces.

This is clearly shown by the mobile platforms control algorithm in which the convergence is made

to points in the xy plane instead of being made to speci�c con�gurations x; y; �. Besides this

simpli�cation on the robot control problem, the implemented cooperative mechanisms are able

to successfully cope with the execution of the speci�ed tasks, further validating the developed

framework.

A major advantage of this framework is also the weak connections to any environment structure.

The equality equivalence relation in the state space supports mechanisms to modify the actions so

the robots can adapt to di�erent environment conditions. The experimental results illustrate the

operation of an algorithm used to iteratively search the C-space regions that were unexplored by

the user de�ned actions.

The experimental results show that the behavioural control approach is suitable to use with multiple

distributed robots loosely coupled, such as the bar transportation system considered. The results

obtained with Mission 3, having di�cult interactions between the mobile platforms, suggest that

the proposed framework can be used as a major guideline to the design of control architectures to

real applications.

Further work includes the extensive study of any properties of the framework and the application

to other classes of problems, namely those considering populations of robots.

References

[Almeida Costa, 1974] Almeida Costa, A. (1974). Cours d'Alg�ebre G�en�erale, volume III. Funda�c~ao

Calouste Gulbenkian | Lisboa.

[Brocket, 1993] Brocket, R. W. (1993). Hybrid Models for Motion Control Systems. In H. L.

Trentelman and J. C. Willems, editors, Essays on Control: Perspectives in the Theory and its

Applications, pages 29{53. Birkh�auser.

[Brooks, 1986] Brooks, R. (1986). A Robust Layered Control System for a Mobile Robot. IEEE

Journal of Robotics and Automation, RA-2(1).

[Craig, 1986] Craig, J. (1986). Introduction to Robotics - Mechanics and Control. Addison-Wesley.

[Hazewinkel, 1996] Hazewinkel, M., editor (1996). Handbook of Algebra, volume I. North-Holland.

[Hungerford, 1996] Hungerford, T. (1996). Algebra. Number 73 in Graduate Texts in Mathematics.

Springer, 8th edition.

[Khatib et al., 1997] Khatib, O., Quinlan, S., and Williams, D. (1997). Robot planning and control.

Robotics and Autonomous Systems, (21):249{261.

[Knapp, 1996] Knapp, D. (1996). Behavior Synthesis: Digital System Design Using the Synopsis

Behavioural Compiler. Prentice Hall.

[Ko�seck�a et al., 1997] Ko�seck�a, J., Christensen, H., and Bajcsy, R. (1997). Experiments in behavior

composition. Robotics and Autonomous Systems, 19:287{298.

[Millan, 1997] Millan, J. (1997). Incremental Aquisition of Local Networks for the Control of

Autonomous Robots. In 7th International Conference on Arti�cial Neural Networks, pages 739{

744. Lausanne, Switzerland.

[Olver, 1993] Olver, P. (1993). Applications of Lie Groups to Di�erential Equations. Number 107

in Graduate Texts in Mathematics. Springer-Verlag, 2nd edition.

[Sandell et al., 1978] Sandell, N. R., Varaiya, P., Athans, M., and G., S. M. (1978). Survey of De-

centralized Control Methods for Large Scale Systems. IEEE Transactions on Automatic Control,

AC-23(2):108{128.

[Saridis, 1996] Saridis, G. N. (1996). On the Theory of Intelligent Machines: A Comprehensive

Analysis. International Journal of Intelligent Control and Systems, 1(1):3{14.

[Sequeira et al., 1998] Sequeira, J., Millan, J., Ribeiro, M. I., and Gon�calves, J. M. G. (1998).

Embedding Learning in Behaviour-Based Architectures: A Conceptual Approach. Journal of

Intelligent Manufacturing, 9(2):201{207.

[Sernesi, 1993] Sernesi, E. (1993). Linear Algebra. A geometric approach. Chapman & Hall.

[Simmons, 1963] Simmons, G. (1963). Topology And Modern Analysis. McGraw-Hill.

A Demonstration of Proposition 2.1

The demonstration follows by a direct veri�cation of the conditions under which the group prop-

erties hold, given the state composition operation of De�nition 2.4. Along the demonstration a

number of functionalities are identi�ed with the algebraic group properties. These functionalities

require that the relation obtained by the removal of the symmetry condition in the equivalence

relation de�ned by the state equality be considered. This relation is called state substitution.

De�nition A.1 (State substitution) Given any two states ai(qi) and aj(qj), the state aj(qj) is

a substitute for state ai(qi), the relation being represented by ai(qi) aj(qj), if and only if

9Kj � 0 : 8kj � Kj ;

(
aj(qj)jkj 2 Bai

(qi)

9ki � 0 : ai(qi)jki 2 V (aj(qj)jkj):

for some neighbourhood V (�).

After some time instant Kj , the trajectories generated by the substitute state are similar to the

ones generated by the substituted one.

State substitution is a weaker relation than the natural equivalence relation, which means that,

after some time, the label of the state ai(qi) can be substituted by the label of the state aj(qj) but

not the reverse.

As each element of A is a transformation on Q by which the trajectories, in Q, are generated,

the whole set is a group of transformations (see, for instance, [Olver, 1993, Sernesi, 1993], for the

de�nition of local group of transformations).

The null element, ae

The null element of A is the unique action that does not generate any purposeful motion. In terms

of natural language, this means that, at each event, it must be always possible to do nothing, or,

to do something that does not compromise future decisions, independently of the con�guration of

the agent at the event.

Using De�nition 2.4,

ae(qe) � ai(qi) � Bae(qe) [Bai
(qi);

and, in order to verify

ae(qe) � ai(qi) = ai(qi);

it is required that, for all qi; qe 2 Q such that the state composition is meaningful, Bae(qe) � Bai
(qi),

independently of the trajectory generated by ae(qe). Moreover, the expressions

(ai(qi) � ae(qe)) � aj(qj) = ai(qi) � (ae(qe) � aj(qj)) = ai(qi) � aj(qj);

must hold for arbitrary states ai(qi); aj(qj), also for meaningful state compositions, yielding

Bae(qe) � Baj
(qj) ^ Bae(qe) � Bai

(qi)

and thus

Bae(qe) � Baj
(qj)\ Bai

(qi)

which, extended over the whole T , yields4

Bae(q) = min
Q;i;j

fBaj
(qj) \Bai

(qi)g: (16)

For any q 2 Q, ae(q) always generates trajectories not moving \too much" away from the current

con�guration, so that any subsequent action has the same e�ect (in the sense of De�nition 2.2) as

it would have if ae had not been applied.

The existence of a null element also means that taking any action after having taking a null action

must lead to

ai(qi) � ae(qe) = ai(qi);

for all qi; qe such that the state composition is meaningful. Applying De�nition 2.4, yields

ai(qi) � ae(qe) = ai(qe)

with ai(qe) � Bai
(qi) [Bae(qe). To maintain the time similarity condition, expression (16) de�nes

Bae(qe) as a bounding set, for arbitrary qe. Thus, ai(qi) must be applied in a neighbourhood of qe
for the state composition to be valid, leading to

ai(qe) = ai(qi):

Therefore, the existence of a null element, ae 2 A, is supported by the state space set.

Inverse element, a�1

Consider an agent executing action ai. At event k1, a new action that will be denoted by a�1
i

is

chosen to start execution, aiming at driving the agent back to a con�guration such that a subsequent

application of ai, at event k2, would have had the same e�ect as if no a�1
i

would have been applied.

Using De�nition 2.4, this statement is represented by

ai(a
�1
i
(ai(q)jk1)jk2) � (a

�1
i
(ai(q)jk1) � ai(q)) = ai(q); (17)

which, to be veri�ed, requires that the substitution

a�1
i
(ai(q)jk1) � ai(q) ae(q) (18)

holds for arbitrary k1, such that

ai(a
�1
i
(ai(q)jk1)jk2) = ai(q)

is veri�ed for some k2. For k1 close enough to the initial time the state substitution in expression

(18) tends to the state equality. By De�nitions A.1 and 2.4, expression (18) requires that

Bae(q) � B
a
�1
i
(ai(q)jk1)[Bai

(q)

4The intersection of all of the bounding regions at an arbitrary con�guration q corresponds to the common

bounding region that is spanned by every combination of actions at that point. The minimum value is obtained by

chosing over the whole Q.

and, by the null element property,

Bae(q) � Bai
(q) ^ Bae(q) � B

a
�1
i
(ai(q)jk1): (19)

De�ning

B
a
�1
i
(ai(q)jk1) = Bai

(q)

yields

a�1
i
(ai(q)jk1) � Bai

(q)

for arbitrary k1, i.e., a
�1
i

lies in the same region spanned by ai. Expression (17) with ai and a�1
i

interchanged and using the substitution ai(a
�1
i
(q)j

k1
) � a�1

i
(q) ae(q) is also veri�ed.

Associative property

Consider the compositions given by

(a3(q3) � a2(q2)) � a1(q1) = a3�2(q2) � a1(q1) = a(3�2)�1(q1): (20)

Using De�nition 2.4, the composition a3�2(q2) = a3(q3) � a2(q2) generates trajectories lying in the

region Ba3
(q3) [Ba2

(q2) and a(3�2)�1(q1) lies in Ba1
(q1)[Ba2

(q2) [Ba3
(q3).

Similarly, for the compositions given by

a3(q3) � (a2(q2) � a1(q1)) = a3(q3) � a2�1(q1) = a3�(2�1)(q1); (21)

the trajectories generated by the state a3�(2�1)(q1) lie in the region de�ned by Ba3
(q3) [Ba2

(q2) [

Ba1
(q1).

From De�nition 2.2, the equality between states requires that the bounding regions be identical.

Moreover, temporal similarity is veri�ed as any trajectory generated by the composed states re-

sulting from (20) and (21) is composed by the same sequence of trajectories. This amount to say

that the relation

a(3�2)�1(q1) = a3�(2�1)(q1)

is veri�ed and the operation � is associative. This concludes the demonstration.

2

The local characteristic of the A group of transformations is due to the fact that the group operation

is not de�ned whenever the state bounding sets do not intersect themselves. Moreover, some of the

elements in A may not be de�ned everywhere in Q.

Proposition 2.1 requires that an additional constraint on the minimum amount of space be used

by the null element. The counterpart is an additional constraint on the minimum overlap between

the sets bounding any two states being composed. This is expressed by the following proposition.

Proposition A.1 (Minimum overlap between states) Consider the group structure de�ned

by Proposition 2.1 and let ai(qi) and aj(qj) be two arbitrary elements of T , such that Rij = Bai
(qi)\

Baj
(qj) is a non empty set. Then, the overlap between the regions bounding the states in the

composition ai(qi) � aj(qj) requires that Rij � Bae(qe), for some qe 2 Rij.

Demonstration: Suppose that Rij was strictly contained in Bae(qe) and qe 2 Rij . From the group

properties

9qw 2 Rij : ai(qi) � aj(qj) = ai(qi) � ae(qw) � aj(qj):

Using De�nition 2.4, some trajectories generated by ai(qi)�ae(qw)�aj(qj) contain points in Bai
(qi)[

Bae(qw)[Baj
(qj) belonging toBae(qw)\Bai

(qi) and Bae(qw)\Baj
(qj), but not toBae(qw)\Bai

(qi)\

Baj
(qj). Those trajectories would violate the spatial similarity with ai(qi) � aj(qj) and thus the

null element property, resulting in a contradiction with the initial assumption on the existence of

the group structure and hence Rij must be at least equal to Bae(qe).

2

B Demonstration of Proposition 2.2

The demonstration of Proposition 2.2 follows from the veri�cation the semiring properties (see

[Almeida Costa, 1974, Hazewinkel, 1996] for the de�nition of semiring) for the triple (A; �;�).

Given any three states, ai(qi); aj(qj); ak(qk), the associative property of the state expansion opera-

tion, de�ned by

ai(qi)� (aj(qj)� ak(qk)) = (ai(qi)� aj(qj))� ak(qk); (22)

indicates that the order in which multiple state expansions are performed is not relevant.

The region bounding the left hand side of (22) is

Bai
(qi) [Bae(qw1

) [Baj
(qj) [Bae(qw2

) [Bak
(qk) (23)

for some
qw1
2 Bai

(qi) \ (Baj
(qj) [Bae(qw2

) [Bak
(qk))

qw2
2 Baj

(qj) \ Bak
(qk):

The right hand side of (22) generates trajectories bounded by

Bai
(qi) [Bae(qw3

) [Baj
(qj) [Bae(qw4

) [Bak
(qk) (24)

for some
qw3
2 Bai

(qi) \Baj
(qj)

qw4
2 (Bai

(qi)[Bae(qw3
) [Baj

(qj)) \Bak
(qk):

The bounding regions (23) and (24) are identical provided that

Bae(qw1
)[Bae(qw2

) = Bae(qw3
)[Bae(qw4

)

for which a su�cient condition is given by

qw1
= qw3

qw2
= qw4

;

and thus each of the two state expansions are constrained to occur at well de�ned regions, which

amounts to say that the Supervision block must detect an adequate event such that those expansions

can be triggered.

The precedence of the state expansion relative to the state composition operation is expressed by

the left and right distributive properties, de�ned by

Left distributive ak(qk)� (ai(qi) � aj(qj)) = (ak(qk)� ai(qi)) � (ak(qk)� aj(qj))

Right distributive (ai(qi) � aj(qj))� ak(qk) = (ai(qi)� ak(qk)) � (aj(qj)� ak(qk)):
(25)

Figure 13 illustrates the details of two possible locations for the � operation inside the control

architecture.

x =

=

=

=ak

ai

aj ����

��
����

��

Case (a) (ak(qk)� ai(qi)) � (ak(qk)� aj(qj))

=

x
=

ia

j
��

a

=

=ak

�
�
�
�

Case (b) ak(qk)� (ai(qi) � aj(qj))

Figure 13: Graphical interpretation of the distributive properties.

The left hand side of the left distributive property generates trajectories inside

Bak
(qk) [Bae(qw1

)[Bai
(qi) [Baj

(qj) (26)

for some

qw1
2 Bak

(qk) \ (Bai
(qi) [Baj

(qj))

whereas the right hand side generates trajectories inside

Bak
(qk) [Bae(qw2

) [Bai
(qi) [Baj

(qj) [Bae(qw3
) (27)

for some
qw2
2 Bak

(qk)\ Bai
(qi)

qw3
2 Bak

(qk)\ Baj
(qj):

The bounding regions (26) and (27) are identical provided that

Bae(qw1
) = Bae(qw2

) [Bae(qw3
)

for which it is necessary and su�cient that qw1
, qw2

and qw3
lie in the same region. This is accomplish

by making, for instance, qw1
= qw2

= qw3
, meaning that the three expansions considered must take

place around the same point. Once more, the detection of an appropriate event, indicating the

location of the expansion, is required. The temporal similarity required by the equality relation is

veri�ed as, by De�nition 2.5, both sides of (25) can be substituted by ai(qi) � aj(qj).

Similarly, the right distributive property leads also to the conclusion that the three state expansion

must take place at the same region requiring the detection of the corresponding triggering event.

Given the group structure of (A; �) and the semigroup structure of (A;�), (A; �;�) is a non-proper

semiring, constrained to the detection of the adequate events to indicate the location for the state

expansion.

2

Therefore, assuming that the constraints on event detection referred in the proposition are veri�ed,

the behaviour-based architecture can be further specialized as detailed either in Figure 13a or in

Figure 13b. Even though the regions bounding the trajectories are identical in the two situations

the trajectories may di�er. In Figure 13a the state composition is performed on the states with

the expanded bounding regions, whereas in Figure 13b the state expansion is performed to �t the

bounding region to the trajectory obtained from the state composition.

The associative property of the � operation expresses the invariance of sequences of state expansions

relative to the order in which they are performed. It is, for example, used by the supervisor during

the planning of a task execution.

