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Abstract
This paper presents a two-layer mobile robot localisation solution based on a Laser Range Scanner

applied on reconstructed 3D models. This solution encompasses a feature matching layer performing
without an initial posture estimate; a second layer based on coordinate transforms to refine an initial
posture estimate, and a third module to assess the likelihood of the results computed by the two
layers.

1 Introduction

This paper presents a novel strategy to perform mobile robot localisation using a Laser Range
Scanner and reconstructed 3D models of real indoor environments. It is based on a two-layer and
three module solution, each module processing the data differently. This approach overcomes most
problems of individual algorithms, increases robustness while keeping the development and analysis
fairly simple, due to its modular nature. In Fig. 1, the first layer, Frame Localisation (FrameLoc), uses
the 3D reconstructed map and a 2D laser scan only, to compute a coarse estimate, which is verified by
a Likelihood Test (LT). The valid results are fed into the second layer, the Approximate Localisation
(ApproxLoc), along with the same map and range scan, to produce a refined estimate, which is also
verified by the Likelihood Test. In case an initial posture is available from other sources (e.g.,
odometry), the first layer is bypassed and the second layer is initialised with the external posture
estimate.

Fig. 1 - Two layers-three modules strategy

The paper is organised as follows: Section 2 describes the RESOLV project, the framework in
which this research was performed. Section 3 summarises some localisation algorithms using laser
range scanners developed in recent years and states the novelty of the proposed approach. Section 4
presents Frame Localisation, to be used in case no a priori posture estimate is available. Section 5
presents the Likelihood Test, which is an error estimate rule. Section 6 presents Approximate



Localisation, to be used if an initial posture estimate is available. Sections 4 to 6 are illustrated with
data of the main stages of a real experiment. Section 7 analyses the interactions between the three
modules. Section 8 concludes the paper and comments on known issues and directions for further
research.

2 The RESOLV project

The RESOLV-REconstruction using Scanned Laser and Video project’s goal is to create a 3D
reconstruction of a real indoor environment using laser range images and video images to be shown
and operated through the Internet, [7]. The 3D models, such as the one shown in Fig. 2a, are
represented in VRML language and may be explored with a regular Web browser. The main RESOLV
sensor is shown in Fig. 2b: it consists of a video camera and a laser camera with a rotating mirror on
the front, both mounted on top of a Pan & Tilt motorised unit. This compound sensor is connected to a
computer where the 3D models are generated. The computer also runs the Web server where the
models are hosted. The system is fully autonomous since all computations are done on-board.

To reconstruct a complex scene, multiple acquisition points are required to resolve occlusions and
maintain a good level of detail. Therefore, the 3D reconstruction system must be moved between
consecutive acquisition points. A mobile robot (Fig. 2c) is the perfect candidate for the task; this robot,
termed AEST - Autonomous Environment Sensor for Telepresence, is based on a mobile platform
featuring a ring of ultra-sound sensors for obstacle detection and odometers for in-motion localisation.
For localisation purposes, the Laser Scanner is the sensor to use whereas odometry is supplemental
since the RESOLV system may also be mounted on a manual trolley. The input data required for
localisation is a 2D horizontal laser scan and the 3D reconstructed maps, containing the 3D surface
description. The nature of the task increases the difficulties for localisation: the map is unknown
beforehand; it is created as the system moves between acquisition points; therefore the environment
around the system may have large unmapped or occluded areas.

(a) (b) (c)

Fig. 2 - (a) sample reconstructed 3D environment, [3] (b) sensing device, (c) RESOLV autonomous system

The localisation solution should provide a 2D position plus orientation posture estimate, (x,y,θθ ),
with less than 5 cm position error and 0.02rad (≈1º) heading error, within the RESOLV system
constraints mentioned and described in [7] and [9] in detail. The proposed solution meets all the
requirements.



3 Related research

In recent years, several systems based on laser scanners have been developed for indoor
localisation, under different world models and applications. Some solutions are briefly described
below and compared with the RESOLV solution.

Some methods use the laser range data associated with other sensors, usually odometry, to
compute incremental updates on the robot posture. Such is the case presented in [6], where
significant features, such as straight lines, are extracted in different moments and the displacement
between them is used to compute the robot’s movement. This solution, although very robust, is
insufficient for RESOLV since it requires an initial posture estimate.

A class of solutions assumes the map is known beforehand; for instance, in [5] a subset of points in
the map are associated to a numerical pattern (“Principal Components of Range Data”) extracted from
the range profile at each of those points. A space is created upon these data and the posture estimate
from a particular range scan is mapped into the space. A Kalman-Bucy filter is used to extract the
most likely solution. This solution is inadequate for RESOLV because it requires a closed and fully
described environment and also a set-up phase.
 In [10] a method closer to RESOLV’s is proposed. The laser data is transformed into a set of lines
or circle arcs, which are combined to resemble natural landmarks, such as corners. If the robot
displacement is approximately known, a feature extracted from the range data should be close to the
corresponding feature on the map. Once the two features are matched the robot posture is known. In
RESOLV’s solution the range data is also transformed into a set of lines, albeit in a different manner,
but since the map is previously unknown, the system must find its own “landmarks” and decide how
to associate extracted landmarks to landmarks on the map. A method inspired by the previous one is
described in [1]. Straight lines, extracted from the range data, are combined to form natural
landmarks. Laser intensity is also measured to enhance the statistical representation of data and to
complement or replace natural landmarks with artificial landmarks such as reflective adhesive bands.
In RESOLV’s solution the laser intensity is also used to enhance range data analysis but artificial
landmarks are unavailable.

Briefly, RESOLV’s solution differences are: it requires no initial posture estimate, thus odometry
is a supplement, whereas it is necessary for other methods; it includes two complementary
algorithms, enhancing its overall performance and minimising each algorithm’s pitfalls, and, last but
not the least, performs correctly even though only a small fraction of the surrounding scene is known.

In [11] a solution for 3D mapping is presented. This work is fairly related to RESOLV’s goals,
although the paradigm is different: it uses a 3 camera video system as an acquisition tool. Surface
boundaries are its distinctive features and range data is translated into a similar description. To
perform localisation the lines extracted from the range scan are compared to the lines in the world
model and a Mahalanobis distance criterion is used to find a match. This solution complies with the
constraints of the RESOLV system, except for the acquisition sensors. However, it should be
interesting to try adapting it to RESOLV.



4 Frame Localisation Algorithm (FrameLoc)

The FrameLoc algorithm requires two inputs: a 2D horizontal laser scan to perceive the
surroundings and a map, which results from the RESOLV 3D reconstructed maps [9]. The localisation
refers the system location to the 3D reconstructed model since there is no external map.

The algorithm flow is represented in Fig. 3: first, the data from the 3D reconstructed map and the
2D laser scan acquired for localisation are expressed in a common form, denoted as the frame. The
frames from each source are then compared. For each match, a candidate posture estimate is
computed. Finally, the set of solutions is analysed and clustered to yield a reduced set of plausible
solutions.

Fig. 3 - FrameLoc operation flow

The first step is to transform the input data into line segments: the 3D reconstructed map (Fig. 4a)
is intersected by a horizontal plane at the height of the laser scan, resulting in a 2D map expressed as
a set of segments (Fig. 4b); likewise, the 2D range scan points (Fig. 5a) are passed through a line
extraction filter to obtain a set of line segments (Fig. 5b). Although the current implementation uses
line segments only, the method is readily extendible to biquadratic curves.

Fig. 4 - (a) 3D reconstructed map,
(b) extracted lines from the 2D map

Fig. 5 - (a) 2D laser scan range data,
(b) extracted lines from 2D laser scan

The second step of the FrameLoc is to associate the segments on each set in a new geometric
entity, termed frame. A frame is defined by two non-parallel segments, called axes, and the point
where the lines defined by the two segments intersect, called origin (Fig. 6a). A frame has two types of
parameters: five local parameters (Fig. 6a), which are independent of the coordinates their axes are
expressed in, and three global parameters relating the frame origin to the axes’ coordinate system
(Fig. 6b).



(a)

start1, start2: from
the origin to the begin-
ning of axis 1 and 2,

end1, end2: from
the origin to the end
of axis 1 and 2,

θ: frame inner angle
(b)

x, y, hd: frame origin
x,y,heading-coordinates
expressed in its reference: the
world for the map frames and
the AEST for the scan frames

Fig. 6 - (a) Frame Local Parameters, (b) Frame Global Parameters

The local parameters are: the distance from beginning of axis and end of axis to the origin, starti

and endi for both axes (i=1,2) and the axes’ inner angle θθ . The global parameters enclose the
information relating the frame to its coordinate system. Given the position and heading of the frame
origin (x, y, hd) and the local parameters, it is possible to restore the axes to their original posture.

To generate the frame sets, each set of line segments is sorted by decreasing size, because longer
segments are more relevant to the environment description and their statistics are more accurate.
Also, the set of candidate segments is reduced to the cases where the lines intersect with
|sin(θθ )|>0.5, ignoring the segment pairs which are close to parallel. The frame generation process is
repeated for a sufficient number of map and scan segments, yielding a map frame set and a scan frame
set.

In normal operation, if a surface is visible for localisation it has been visible before to the 3D
reconstruction process. Therefore, to verify if a scan frame corresponds to a given map frame, it must
fit within the map frame (Fig. 7). The frame match test, (1), requires the local parameters only,

Fig. 7 - Frame match
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where δ is a heuristic limit to the angle difference. The angle δ depends on surface characteristics
which are difficult to model and on the laser, to a lesser extent. Nevertheless, a conservative value
(δ<0.05rad ≈ 3º) accommodates almost every case, and has been used on the experiments.

If the frame match, (1), is valid, the canonical coordinate transform equation (2) applied to the
frames’ global parameters, yields a candidate solution ( , , )x yR R Rθ , expressing the system posture in the
3D reconstructed model reference.

θ

θ θ
θ θ

R
Scan Map

Map

Map
R R R

R R R

Scan

Scan

hd hd

x

y

x

y

x

y

= −

















=
−































1 1

1 0 0 1 1

cos sin
sin cos . (2)



Fig. 8 - Some possible postures

The FrameLoc is intrinsically exponential. Therefore, it is vital to keep the number of instances
and the computation effort as low as possible. To attain these goals, all sets are sorted and the
algorithm is developed in an iterative manner. The frame generator uses only the segments longer
than a given threshold and the frame sets are also sorted by decreasing size of the longer axis. The
frame matching is applied iteratively to the elements in the frame lists, until a coherent pattern of
postures becomes apparent in the (x, y, θθ ) solution space. In the process, false hits due to
environment symmetry (Fig. 8) spread sparsely, while the true hits concentrate in close
neighbourhoods (A and B in Fig. 8).

To compute the most likely solutions a weighted clustering procedure is used, where the weights
are the product of the scan frames axes’ lengths, since long, balanced axes are supported on well
defined surfaces in the environment. The clustering process aggregates all solutions in a single
neighbourhood into a single weighted posture (with weight equal to the sum of the weights of all
cluster elements), reducing the frame match set to a few plausible candidates with most of the weight
and many clusters with residual weight, which are clearly false hits due to environment symmetry.

Otherwise, the FrameLoc algorithm is extended, gathering more line segments from the original
sets, building up the associated frames and matching the new instances with both the previous and
the new ones. The new match candidates are added to the solution space without losing the existing
data.

The FrameLoc final result is a short list of postures, sorted by decreasing weight. Most often, the
first element is the correct posture and takes more than 50% of the total weight. The clustering
procedure is very stringent, therefore clusters A and B in Fig. 8, although only 8 cm apart, are not
merged. This option favours homogeneous clusters with small variance, at the expense of a longer list
of postures and diluted weights. Even when  FrameLoc best solution is less clear, the Likelihood Test,
described next, will assess very accurately the quality of each candidate posture.

Except for very odd or symmetric environments or insufficient data, the algorithm converges
swiftly to a reduced set of candidate clusters. For instance, the current example was based on 107
scan segments and 38 map segments and 16 frames were sufficient to compute the correct solution (A
in Fig. 8).

5 Likelihood Test

The solutions computed by FrameLoc and ApproxLoc (described in Section 6) are based on subsets
of the laser range scan and the 2D map data. To assess the quality of each candidate posture, a
likelihood criterion is defined: measure the difference  between the whole laser range scan (Fig. 5a)
and the 2D map (Fig. 4b) extracted from the reconstructed 3D model.

The first step is to express both profiles in a common form. For each candidate posture ( , , )x yR R Rθ , a
simulated laser scan profile is evaluated using the 2D map assuming the RESOLV system is located at
( , , )x yR R Rθ . This simulated scan technique will be used also for ApproxLoc.

The simulated laser scan replicates the main characteristics of the real laser scan, i.e., it is centred
on the RESOLV system and taken at the sensor head distance from the ground, it has the same
angular width and number of points. An histogram on the distance error (the modulus of the range



error) is restricted to non-negative values and should resemble the normal curve with twice the
amplitude. This histogram may be regarded as the laser scanner “signature” ( Fig. 9a).

(a) (b) (c) (d)

Fig. 9 - (a) The laser signature and likelihood histograms: (b) correct solution, (c) to be refined, (d) wrong solution

Once the real laser data and the 2D map data are expressed as “scans” their point-to-point
difference is computed. This measure establishes a likelihood criterion relating the laser scan to the
map. If the posture estimate ( , , )x yR R Rθ  were exact, the difference between the real scan and the
simulated scan would be due only to the laser errors, the errors in the simulated scan model and the
errors on the 3D reconstructed map. Since the first error source is much stronger than the others,
drawing a histogram on the point-to-point distance should reveal a pattern close to the laser
signature.

For the sake of simplicity, the simulated laser scan doesn’t consider the detailed sensor
characteristics, namely beam divergence, sizeable footprint, angle of incidence, surface reflectance
and transitions since these approximations have a minor influence in the range error pattern.
Although these inaccuracies degrade the absolute likelihood measure, the relative values remain
unchanged, since they affect all difference measures likewise. Different laser cameras are used in the
RESOLV project, and their errors follow a normal distribution with zero mean and 1 to 3 cm standard
deviation [8].

The point to point distance measurement must account for invalid points that may exist in both
“scans”. The points in the simulated scan are invalid when it includes void areas in the reconstructed
map. The real scan profile has some invalid points too, which are mainly due to specular reflections,
device errors, time-outs and poor reflectance. Once the errors are detected the histogram is
computed: for each pair of valid points the Cartesian distance is computed and stored in 1 cm slots, up
to a limit. Above that, all points are grouped in one common slot. Fig. 9b to Fig. 9d show typical
distance histograms, superimposed on the laser signature. If the histogram is close to the laser
signature, the likelihood measure is high: the solution is correct (Fig. 9b).  If the likelihood measure
falls below a threshold the test fails (Fig. 9d) (e.g., less than 50% pairs below 10 cm for FrameLoc and
less than 90% pairs below 5 cm for ApproxLoc). Intermediate cases, such as (Fig. 9c), are subject to
refinement by ApproxLoc.

A real example in Fig. 10 illustrates the characteristics of the Likelihood pattern. This experiment
was made in an 12x6 meter laboratory room, with a 280º range scan sampled at 1800 points. The two
solutions presented in Fig. 8 correspond to the clusters A=(2.296m, 2.381m, 0.022rad (1.24º)) and
B=(2.217m, 2.366m, 0.019rad (1.1º)) computed by FrameLoc. This case highlights the sensitivity of the



Likelihood Test, which is able to discriminate two postures only (8 cm, 0.002rad (0.14º)) apart and
reacts to a small correction such as A to A’ ( 1.5 cm, 1.7x10-4 rad (0.01º)).

The graphics in Fig. 10 show the distance distribution classified in 1 cm slots from 0 to 19 cm and a
final class above 19 cm. In Fig. 10a the two lines represent the Likelihood of the solution computed by
FrameLoc. Solution A is better, although B is already acceptable: 76.5% pairs are closer than 10 cm.
The Approximate Localisation introduced in Section 6 (Fig. 10b), updates A and B to A’=(2.285m,
2.371m, 1.25º) and B’=(2.285m, 2.371m, 1.35º). Comparing the two images  it is clear how a slight
posture update “pushes” most of the instances in the histogram to the left, increasing the Likelihood
measure.

FrameLoc results

distance:    < 5 cm     < 10 cm
A:               84.5%       92.5%
B:               47.5%       76.5%

ApproxLoc results

distance:    < 5 cm     < 10 cm
A’:               86.5%      96.9%
B’:               87.3%      96.5%

(a) (b)

Fig. 10 - (a) Likelihood after FrameLoc, (b) Likelihood after ApproxLoc

Up to around 4 cm, i.e. twice the range error standard deviation, a good histogram, such as A, is
close to the laser signature. A poorer solution, such as B, presents a reduced Likelihood measure
which can be enhanced by ApproxLoc up to the signature curve (from B to B’). From 4 cm to 19 cm, the
histogram on Fig. 10a accounts for the instances that may be fitted closer by the ApproxLoc. The last
slots include the pairs farther from the sensor, and therefore very sensitive to angular errors. It also
includes the residual pairs that do not match at all, because of sensor or map errors. The graph on
Fig. 10b shows the results after ApproxLoc. It is apparent that A’ and B’ are very close to the Laser
Scanner signature, except for the residual pairs above 19 cm and a minor peak at 8 cm, due to
inaccuracies in the 3D reconstruction.

6 Approximate Localisation Algorithm (ApproxLoc)

The second layer of the proposed localisation methodology requires an initial posture estimate,
supplied either by FrameLoc, the odometry data in the AEST platform as described in [4], or any
other external source. The algorithm uses the same simulated scan technique as described Section 5:
to compare the map and the range scan, a simulated scan is taken, assuming the platform is at the
given initial posture estimate, ( , , )x yI I Iθ . ApproxLoc follows an approximation approach: assuming
the initial posture is close to the real posture, ( , , )x yw w wθ , the laser scan should be very close to the
simulated laser scan “perceived” in the reconstructed map; thus, a sample point in the simulated scan
( , )x y i

SimSc , should have its counterpart in the range scan, ( , )x y j
AEST , in the vicinity of position  i. In

particular, if one natural landmark is identified in the simulated scan, its range scan counterpart



should lie in the vicinity of the same radial direction. In this implementation the corners are chosen
as landmarks.

In  Fig. 11 the references involved are shown. The simulated scan points refer to the known local
reference with origin ( , , )x yI I Iθ ; the laser scan points refer to the reference attached to the AEST
platform located at the unknown posture ( , , )x yw w wθ ; the vector ( , , )x yp p pθ transforms the AEST
reference to the SimSc reference.

Assume that the sample points, ( , )x y i
SimSc and ( , )x y j

AEST , are the points closest to a surface
transition. These natural landmarks are readily detected by sliding a window through the range
profile: when a consistent change of direction occurs, the corner is detected. When ( , )x y i

SimSc  is
detected in the simulated scan, where there is no noise, a similar feature is searched for in the real
scan around position i,  i k j i k− ≤ ≤ + , with a fixed value of k, e.g. k=5. In Fig. 12 the landmark
selection procedure is illustrated. The laser scan and the simulated scan are superimposed, referred
to the platform. The lines indicate the directions where the landmarks were detected.

Fig. 11 - References and coordinate transforms Fig. 12 - Natural landmark detection (a) success: four pairs are found
(b) failure: one pair is found while two are required

To determine the three dimensional vector ( , , )x yp p pθ  a minimum of two landmark pairs are
required, each pair supplying two equations. The process is applied to a maximum of 5 to 6
landmarks, as experiments shown to be  the balance point between computational burden and
equation stability.

If the initial estimate is accurate enough and the 2D map extracted from the reconstructed 3D
model includes enough landmarks within the scan width, a sufficient number of landmarks are
detected (Fig. 12a). Otherwise, the search fails, such as in (Fig. 12b); in this particular case there are
too few landmarks because the reconstructed model perceived from the top of the scene is very
incomplete (Fig. 4b). In such cases, detecting more landmarks would require a relaxed confidence
criterion. The update transform from the simulated range scan reference (SimSc) to the actual AEST
posture can be computed using (2), rewritten as (3). Considering  n pairs simultaneously, generates a
non-linear over determined system, (4).
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Assuming the angular correction θP is small, it is possible to linearise the system around θP=0 (5).
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Replacing the terms in θP as in (5) and rearranging (4) in order of the unknowns, ( , , )x yP P Pθ  yields the
over determined system (6a), where  M is the coefficient matrix (6b) and ∆∆  is the difference matrix
(6c).
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This over determined system may be solved in the form of (7), where the coefficients of MT∆∆  and
MTM are defined in (8a) and (8b), respectively.
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In (8a) and (8b) all sums are from 1 to the number of points, n. It is now clear that (7) represents a
(3x3) linear system which can be solved by standard Gauss elimination. The result, ( , , )x yP P Pθ , is the
transform parameters relating the actual AEST posture where the range scan was taken, to the initial
posture estimate, ( , , )x yI I Iθ , where the simulated laser scan was taken.

The AEST posture, ( , , )x yw w wθ , is updated according to (9),
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If the correspondence between landmarks in the simulated and range scans was perfect, one itera-
tion of ApproxLoc would suffice to find the optimal estimate. However, this is seldom the case since it
is very unlikely to have a scan sample exactly on the corner. Therefore, the algorithm operates in
closed loop, using the estimated posture of one iteration to start the next one. The Likelihood Test
tracks the convergence of the algorithm and the final solution usually occurs within three to five
iterations. During the loop, the laser range error induces a uniform error pattern, which can not be



resolved by further iterations. Thus, the boundary for precision is close to the laser range error,
which lies between 1 and 3 cm, for the RESOLV equipment. Hence, the typical output accuracy is 2.5
cm, 0.01rad (≈0.6º).

7 Operation Flow

The Localisation operation flow depends on the presence of odometry or other external initial data.
If an initial posture estimate is available, then ApproxLoc is called. Otherwise, FrameLoc must be
called to compute a first estimate for the AEST posture which is fed into ApproxLoc.

The simple operation sequence shown in Fig. 1 solves the vast majority of cases. However, some
difficulties remain especially while the map is very sparse or if the scan resolution or accuracy is
diminished. Moreover, calling FrameLoc is seldom necessary when an external initial estimate,
usually odometry, is available. Thus, a loop structure (Fig. 13) was created for accuracy and
robustness sake.

The start point of the Localisation cycle depends on the presence of odometry. If there is no
odometry data the process starts at Frame Localisation, otherwise the posture estimate read from the
odometers is used to compute the simulated scan, which is entered in the ApproxLoc, together with
the real range scan. The resulting posture estimate is sent to the Likelihood Test to check if the two
scans match. In case of success the algorithm ends, otherwise the initial posture was inaccurate and
FrameLoc is called.

Fig. 13 - Compound algorithm operation flow

FrameLoc operation is based on the environment 3D model and the 2D laser range scan only, thus,
it is irrelevant whether ApproxLoc has been called before. The results from FrameLoc are a list of
possible postures which are passed, one by one, to the Likelihood Test. The approved postures are
sent to ApproxLoc, while the others are discarded.

To avoid an endless loop after ApproxLoc, a flag indicates if FrameLoc has already been called; in
that case the algorithm ends with failure. In future extensions a more sophisticated control loop
would be inserted at this stage.

It is interesting to notice that a single range scan is used for all the operation loop. However, if the
algorithm fails, it is possible to repeat it taking a scan at a different height. This is a likely extension
to the compound algorithm and will be discussed in the next section.



8 Conclusions, known issues and extensions

This paper presents a novel approach for indoor localisation using a Laser Range Scanner. It
requires only a partial map and no initial localisation estimate. Because one single algorithm would
fail to operate properly in some conditions, two complementary algorithms were developed. The
presented solution proved adequate for 3D model reconstruction, because it ignores large unknown
areas, keeping its “anchor” on the available reconstructed 3D model. Accuracy requirements were
exceeded and (2.5 cm, 0.01rad (0.6º)) maximum errors are expectable  in standard conditions.

The algorithm uses computer resources with modesty. There are no large arrays, only compre-
hensive object lists. Since all repetitive tasks include tests and processing of linear equations and
systems of reduced dimension, the algorithms are swift. The only computation intensive task is the
line extraction algorithm (not described) even though it was developed in an efficient iterative form.

However, some pitfalls remain. One major cause of concern is the close nature of the localisation
sensor and the map acquisition sensor. If the Laser Scanner fails to detect a mirror and maps a second
scene behind the mirror, it is quite likely that the localisation will repeat the error. Strictly speaking,
this is not a localisation error since the model includes the virtual scene. Nevertheless, it is an
undesirable feature. The line extraction algorithm includes some statistical analysis using laser
reflectance data to overcome this problem, in particular for mirrored windows. Also, if some surfaces
in the scene are too dark, smooth or very detailed, the 3D reconstruction program will fail to extract
these surfaces, leading to void areas in the 3D model. However, if there is a sufficient number of well
defined surfaces the algorithm will “anchor” to them for localisation.

A subtler problem arises on non-horizontal floors. The 2D map extracted from the 3D model is
independent of the AEST location if and only if the plane intersection is parallel to the ground. So,
unless the AEST is equipped with an inclinometer of any type, it is restricted to piece-wise horizontal
floors.

Finally, problems arise in highly symmetric environments, such as square or round rooms or long
corridors with evenly spaced doors, which occur more often. If the corridor length is greater than the
Laser Scan operating range, the algorithm will find more than one equally likely solution separated
by the distance which correspond to the corridor’s repeating feature period.

The algorithm presented may be extended in several ways. One natural extension is the
generalisation of the frame elements to biquadratic curves. On another direction, it is also desirable
to include a richer control structure in the loop, such as automatically choosing the scan height,
repeating localisation at different heights and matching the results.

The major extension to the algorithm is to compute the localisation while the AEST is moving. The
authors are convinced that this task will require a new approach, using a narrow laser scan,
anchoring the localisation to a few carefully selected landmarks, in the lines suggested by [2].
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